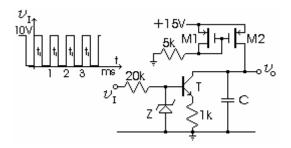
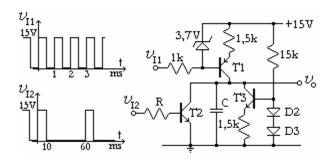
U.S.B. Dto. E. y C. EC-3179 Tarea 4

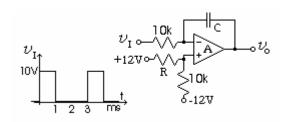

1.- Determine C y t_1 (tiempo v_1 en 10V) para obtener v_0 de amplitud pico a pico de 5V.

T: BJT, β_F =100, β_R =5, V_J =0,7V

M1,M2: MOSFET V_{Th} = -1V, k_n =2ma/ V^2

Z: Diodo zener V_{zener} =5,7V

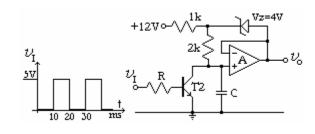

¿Que sucedería si t₁ calculado se incrementa en 50%?


2.- Determine C y R para máxima excursión de $v_{O}(t)$ sin saturación de $T_{1},\,T_{3}.$

Grafique v_O(t)

BJT: $\beta_F = 100, \beta_R = 5, V_J = 0.7V$

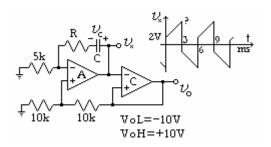
3.- Determine R y C para obtener máxima amplitud de la onda en la salida (sin distorsión). $V_{O \text{ sat}} = \pm 12V$ (para el amplificador)



4.- Se desea obtener onda de máxima amplitud en la salida.

Determine R y C.

BJT: $\beta_F=100, \beta_R=5, V_J=0.7V$


 $I_{zener\ min}$ =0,5mA

5.- Para el circuito dado determine los valores de R y C y demuestre que la forma de onda de v_X es como lo muestra la figura. ¿Que valor pico alcanza v_X ?

También grafique v_O y v_C .

 $V_{OH} = +10V$, $V_{OL} = -10V$

