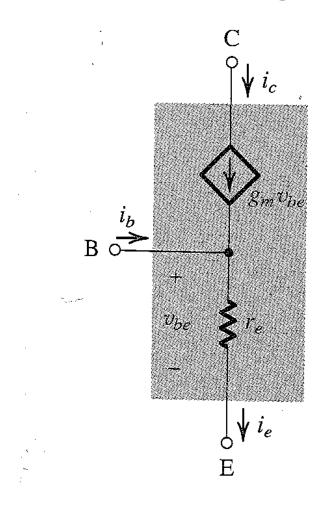
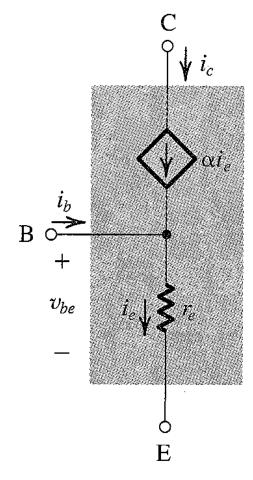

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC

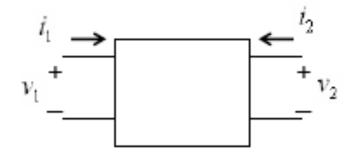


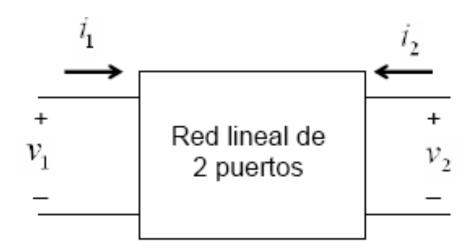
El modelo también aplica para transistores pnp sin cambio de polaridades


MODELOS DE PEQUEÑA SEÑAL: EL MODELO T Se eliminan las fuentes DC

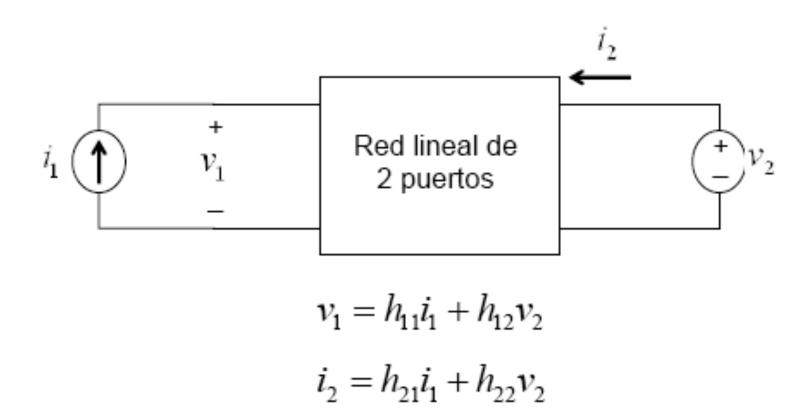
Este modelo muestra explícitamente la resistencia de emisor r_e en lugar de la resistencia de base r_π

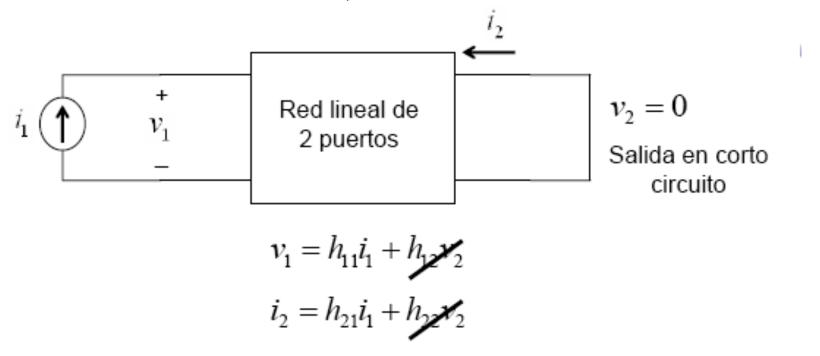
$$g_m = I_C/V_T$$


$$r_e = \frac{V_T}{I_E} = \frac{\alpha}{g_m}$$


MODELO DE REDES DE DOS PUERTOS

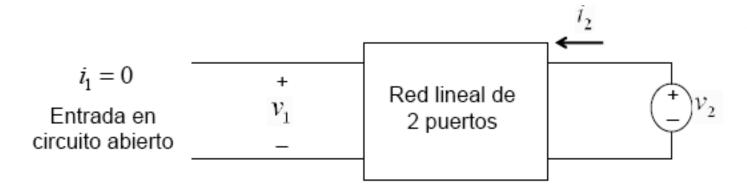
Redes de 2 puertos (bipuerto)


PARÁMETROS DE REDES DE DOS PUERTOS


Se escogen dos variables dependientes y dos independientes (6 opciones)

Representación	Variables dependientes	Variables independientes
Control por corriente	v_1, v_2	i_1, i_2
Control por voltaje	i_1, i_2	v_1, v_2
Hibrido 1	v_1, i_2	i_1, ν_2
Híbrido 2	i_{1},v_{2}	v_1, i_2
Transmisión 1	v_1, i_1	v_2, i_2
Transmisión 2	v_2, i_2	v_{1},i_{1}

PARÁMETROS HÍBRIDOS TIPO 1


DEFINICIÓN DE PARÁMETROS HÍBRIDOS PARA EL PUERTO DE ENTRADA CUANDO EL VOLTAJE DEL PUERTO DE SALIDA ES CERO

$$h_{11} = \frac{v_1}{i_1} \bigg|_{v_2=0}$$
 Impedancia de entrada con salida en corto circuito OHMS

$$h_{21} = \frac{i_2}{i_1} \bigg|_{v_2=0}$$
 Ganancia directa de corriente con salida en corto circuito ADIMENSIONAL

DEFINICIÓN DE PARÁMETROS HÍBRIDOS PARA EL PUERTO DE SALIDA CUANDO LA CORRIENTE DEL PUERTO DE ENTRADA ES **CERO**

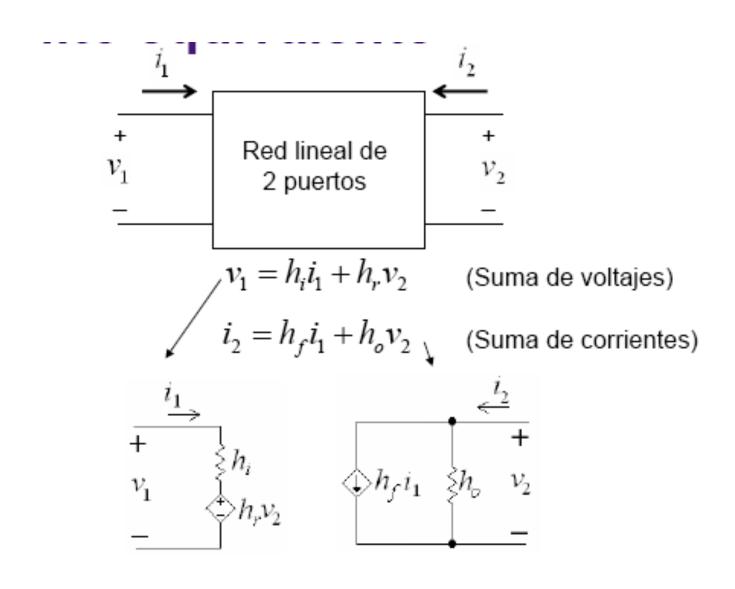
$$v_1 = h_{11} + h_{12}v_2$$
$$i_2 = h_{21} + h_{22}v_2$$

$$i_2 = h_{21}l_1 + h_{22}v_2$$

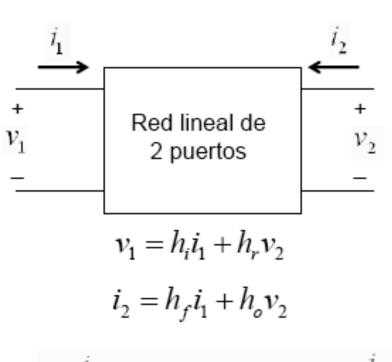
$$h_{12} = \frac{v_1}{v_2} \bigg|_{i_1=0}$$
 Ganancia inversa de voltaje con entrada en circuito abierto ADIMENSIONAL

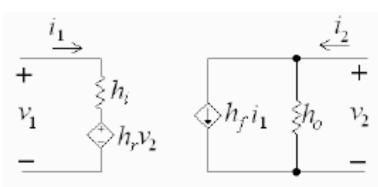
$$h_{22} = \frac{i_2}{v_2} \bigg|_{i_1=0}$$
 Admitancia de salida con entrada en circuito abierto SIEMENS

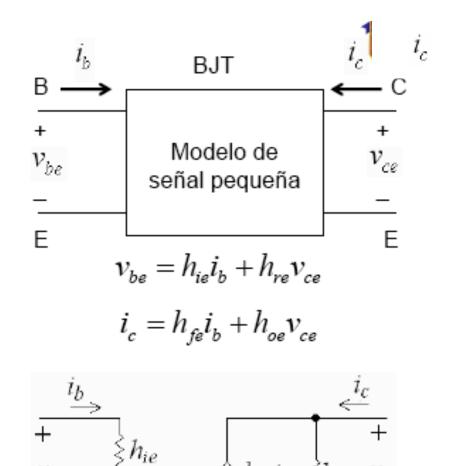
DEFINICIÓN DE LOS PARÁMETROS HÍBRIDOS SEGÚN LOS CONCEPTOS CLÁSICOS DE IMPEDANCIAS Y GANANCIAS


$$h_{11} = \frac{v_1}{i_1}\Big|_{v_2=0}$$
 Impedancia de **entrada** con salida en corto circuito $\implies h_i$

$$h_{21} = \frac{i_2}{i_1}\Big|_{v_2=0}$$
 Ganancia **directa** de corriente con salida en corto circuito $\longrightarrow h_f$


$$h_{12} = \frac{v_1}{v_2}\Big|_{i_1=0}$$
 Ganancia **inversa** de voltaje con entrada en circuito abierto $\implies h_r$ REVERSE


$$h_{22} = \frac{i_2}{v_2} \Big|_{i_1=0}$$
 Admitancia de **salida** con entrada en circuito abierto $\implies h_a$


IDENTIFICACIÓN DE LOS PARÁMETROS EN LAS ECUACIONES CON LA NOTACIÓN CORRESPONDIENTE Y CIRCUITO EQUIVALENTE

MODELO DE EMISOR COMÚN

OBTENCIÓN DE LOS PARÁMETROS HÍBRIDOS DE UN TRANSISTOR SOBRE LAS CURVAS CARACTERÍSTICAS BE

h_{ie}

Tomando el caso de h_{ie}

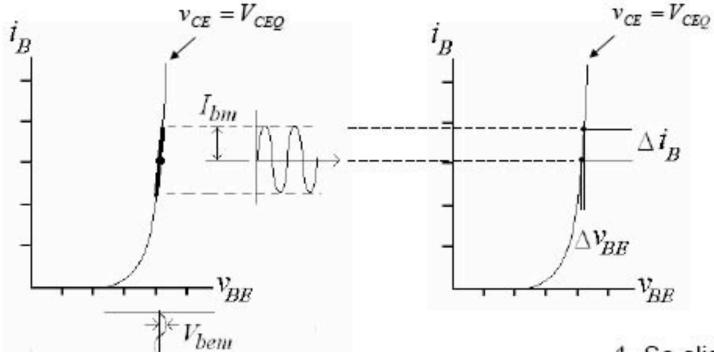
$$v_{be} = h_{ie}i_b + h_{re}v_{ce}$$

$$\downarrow$$

$$h_{ie} = \frac{v_{be}}{i_b}\Big|_{v_{ce}=0}$$

Recordando que para excitación senoidal

$$v_{be} = V_{bem} \sin \omega t$$
 $i_b = I_{bm} \sin \omega t$
 $v_{ce} = V_{com} \sin \omega t$

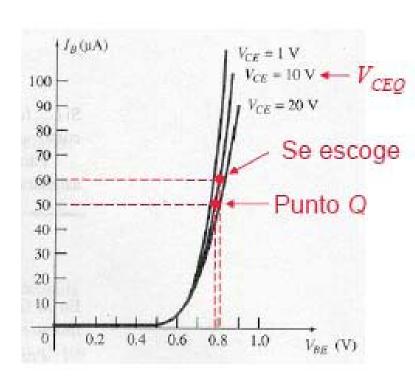

Cuando $v_{ce}\!\!=\!\!0$ entonces

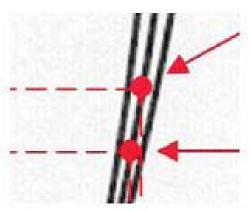
$$v_{\mathit{CE}} = V_{\mathit{CEQ}} + y_{\mathit{ce}}' = V_{\mathit{CEQ}}$$

Sustituyendo y simplificando

$$h_{ie} = \frac{v_{be}}{i_b} \bigg|_{v_{ce} = 0} = \frac{V_{bem}}{I_{bm}} \bigg|_{v_{CE} = V_{CEQ}}$$

Usando las curvas características BE

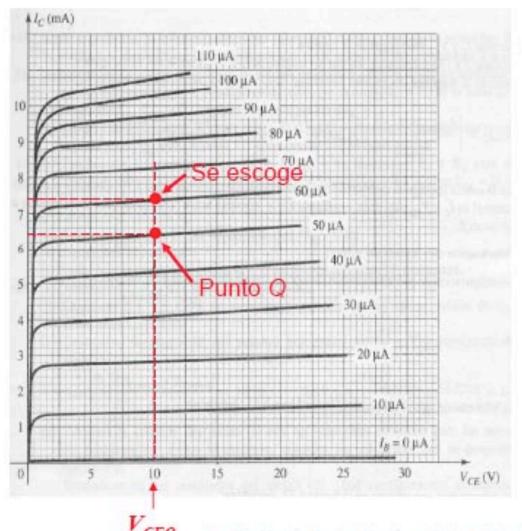



$$h_{ie} = \frac{V_{bem}}{I_{bm}} \bigg|_{v_{CE} = V_{CEQ}} = \frac{\Delta v_{BE}}{\Delta i_B} \bigg|_{v_{CE} = V_{CEQ}}$$

- 1- Se elige un punto alrededor del punto Q que satisfaga la condición (v_{CE}=V_{CEQ}).
- Se identifican los incrementos.
- Se dividen.

EJEMPLO

Ejemplo: Usando las curvas características mostradas, obtener h_{ie} sabiendo que I_{BQ} =50 μ A y V_{CEQ} =10V



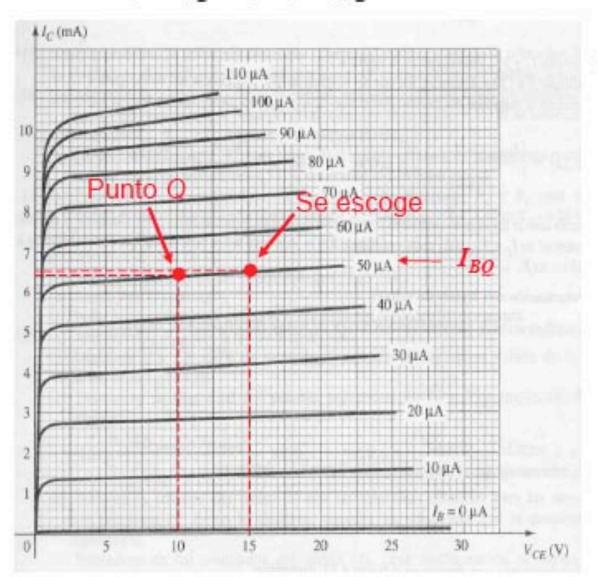
Solución: De las curvas

$$h_{ie} = \frac{(0.81 - 0.78)\text{V}}{(60 - 50)\mu\text{A}} = 3 \text{ k}\Omega$$

hfe

Ejemplo: Usando las curvas características mostradas, obtener h_{fe} sabiendo que I_{BO} =50 μ A y V_{CEO} =10V

Solución: De las curvas

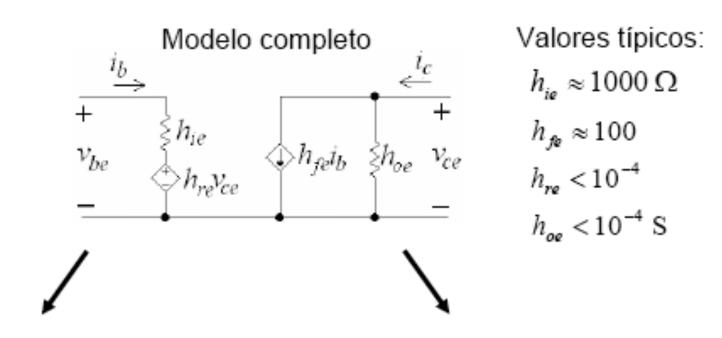

$$h_{fe} = \frac{\Delta i_C}{\Delta i_B}\Big|_{v_{CE} = V_{CEQ}}$$

$$h_{fe} = \frac{(7.4 - 6.4) \,\text{mA}}{(60 - 50) \,\mu\text{A}} = 100$$

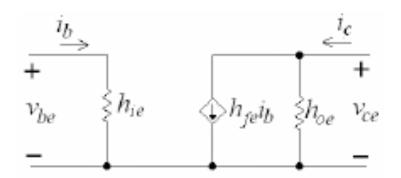
$$h_{fe} pprox eta$$

hoe

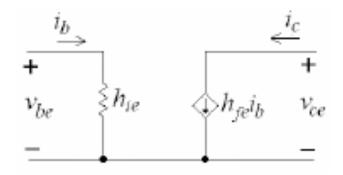
Ejemplo: Usando las curvas características mostradas, obtener h_{oe} sabiendo que I_{BO} =50 μ A y V_{CEO} =10V



Solución: De las curvas CE


$$h_{oe} = \frac{\Delta i_C}{\Delta v_{CE}}\Big|_{i_B - I_{BQ}}$$

$$h_{oe} = \frac{(6.52 - 6.4) \,\text{mA}}{(15 - 10) \,\text{V}} = 24 \,\mu\text{S}$$


MODELOS SIMPLIFICADOS

Modelo simplificado 1 $(h_{re} = 0)$

Modelo simplificado 2 $(h_{re} = 0, h_{oe} = 0)$

PREPARACIÓN DE LA PRÁCTICA 3 CARACTERÍSTICAS DEL BJT. AMPLIFICADOR EMISOR COMÚN ESPECIFICACIONES DEL TRANSISTOR NPN 2N3904

NPN General Purpose Amplifier

This device is designed as a general purpose amplifier and switch. The useful dynamic range extends to 100 mA as a switch and to 100 MHz as an amplifier.

Absolute Maximum Ratings* T_A = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	60	V
V _{EBO}	Emitter-Base Voltage	6.0	V
Ic	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics

 $T_A = 25$ °C unless otherwise noted

Symbol	Characteristic	Max			Units
		2N3904	*MMBT3904	**PZT3904	
P _D	Total Device Dissipation	625	350	1,000	mW
	Derate above 25°C	5.0	2.8	8.0	mW/°C
R _{eJC}	Thermal Resistance, Junction to Case	83.3			°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	125	°C/W

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units	
OFF CHARACTERISTICS						
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	I _C = 1.0 mA, I _B = 0	40		V	
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu A, I_E = 0$	60		V	
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	6.0		V	
I _{BL}	Base Cutoff Current	V _{CE} = 30 V, V _{EB} = 3V		50	nA	
I _{CEX}	Collector Cutoff Current	V _{CE} = 30 V, V _{EB} = 3V		50	nA	

ON CHARACTERISTICS*

h _{FE}	DC Current Gain	$I_{c} = 0.1 \text{ mA}, V_{ce} = 1.0 \text{ V}$	40		
		$I_{c} = 1.0 \text{ mA}, V_{ce} = 1.0 \text{ V}$	70		
		$I_{c} = 10 \text{ mA}, V_{ce} = 1.0 \text{ V}$	100	300	
		$I_c = 50 \text{ mA}, V_{ce} = 1.0 \text{ V}$	60		
		$I_{c} = 100 \text{ mA}, V_{ce} = 1.0 \text{ V}$	30		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C = 10 mA, I _B = 1.0 mA		0.2	V
		$I_{c} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA}$		0.3	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	I _C = 10 mA, I _B = 1.0 mA	0.65	0.85	V
		$I_{c} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA}$		0.95	V

SMALL SIGNAL CHARACTERISTICS

f _T	Current Gain - Bandwidth Product	I _C = 10 mA, V _{CE} = 20 V, f = 100 MHz	300		MHz
C _{obo}	Output Capacitance	$V_{CB} = 5.0 \text{ V}, I_{E} = 0,$ f = 1.0 MHz		4.0	pF
C _{ibo}	Input Capacitance	$V_{EB} = 0.5 \text{ V}, I_{C} = 0,$ f = 1.0 MHz		8.0	pF
NF	Noise Figure	I_C = 100 μA, V_{CE} = 5.0 V, R_S =1.0kΩ,f=10 Hz to 15.7kHz		5.0	dB

SWITCHING CHARACTERISTICS

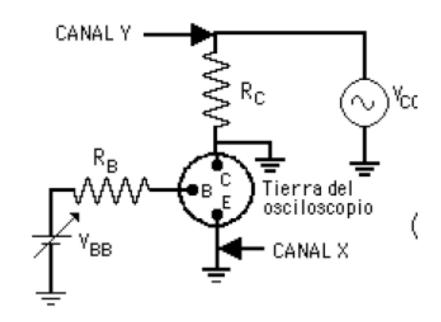
t _d	Delay Time	$V_{CC} = 3.0 \text{ V}, V_{BE} = 0.5 \text{ V},$	35	ns
t _r	Rise Time	$I_C = 10 \text{ mA}, I_{B1} = 1.0 \text{ mA}$	35	ns
t _s	Storage Time	V _{CC} = 3.0 V, I _C = 10mA	200	ns
t _f	Fall Time	$I_{B1} = I_{B2} = 1.0 \text{ mA}$	50	ns

^{*}Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%

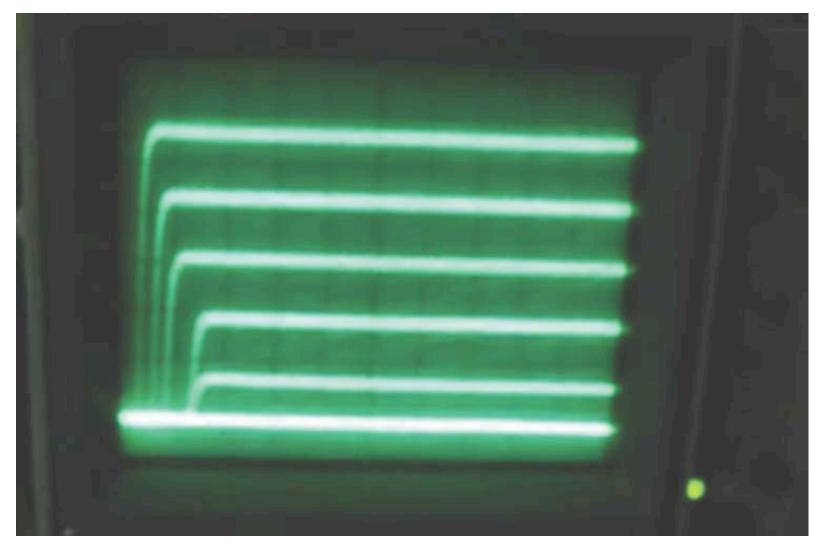
CIRCUITOS PARA LA PRÁCTICA Nº 3

Características de salida del BJT

El transistor se dibuja como un componente real para indicar que no es parte de un amplificador.


$$R_C = 1k\Omega$$

 $R_B = 4.3k\Omega$, $10k\Omega$

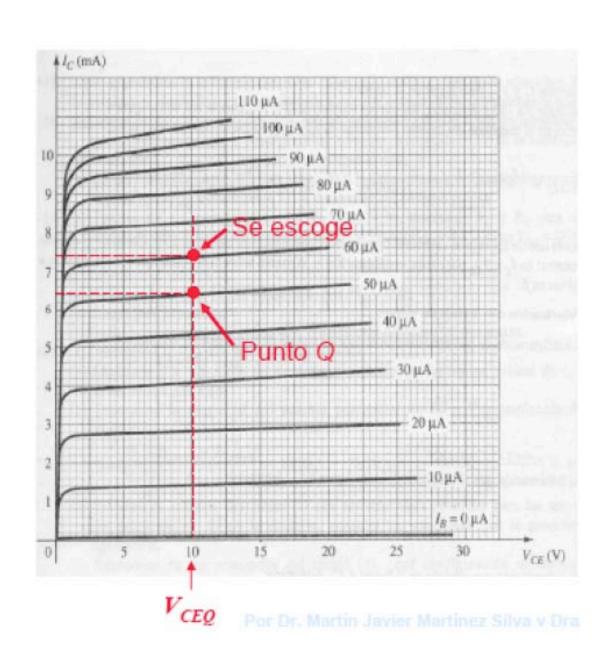

Voltaje V_{BB} = De 0 a 5V

Generador: $V_{max} = 10V$ Voffset= 10V f = 1 kHz

Para cada valor de V_{BB} se observa una sola curva de I_C vs. V_{CE}

En la pantalla del osciloscopio

Para medir β (h_{fe})


Primera curva en pantalla: Se mide I_{B1} , I_{C1} y V_{CE}

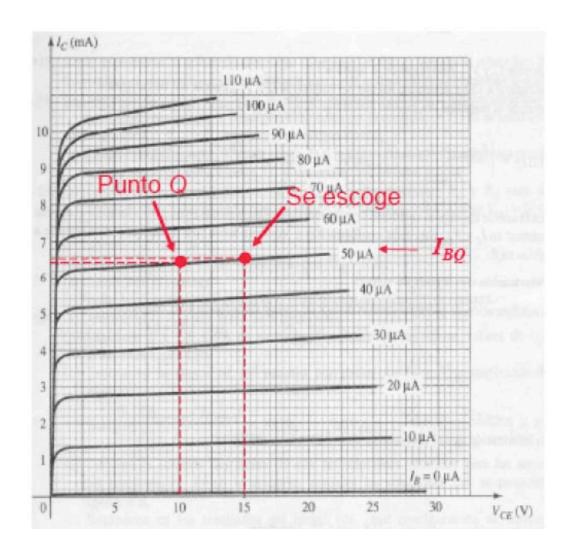
Se incrementa la fuente DC para obtener una segunda curva.

Para el mismo V_{CE} se mide I_{B2} e I_{C2}

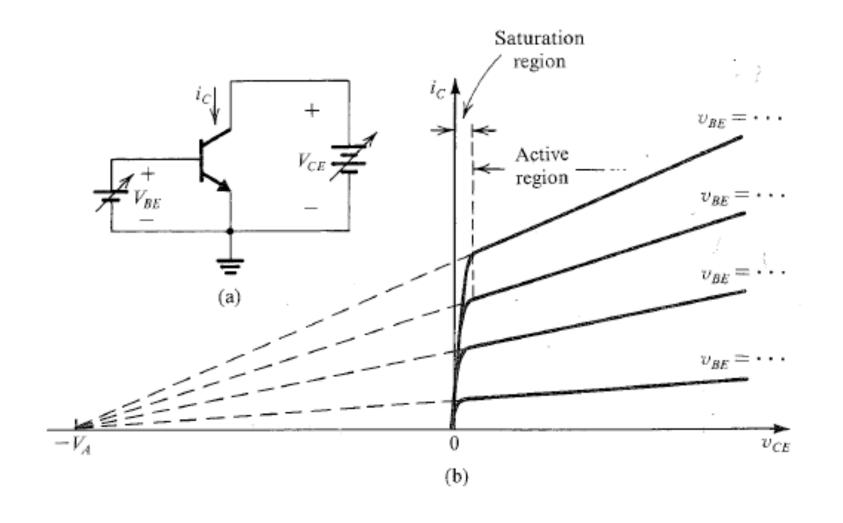
El parámetro β es:

$$\beta = \frac{I_{C2} - I_{C1}}{I_{B2} - I_{B1}}$$

Para medir r_o (h_{oe})


Sobre una misma curva (I_B constante):

Se mide I_{C1} y V_{CE1}


Se mide I_{C2} y V_{CE2}

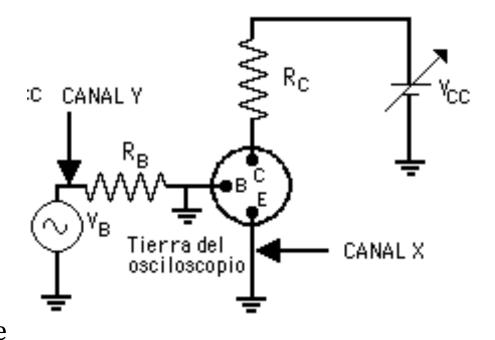
El parámetro ro es:

$$r_o = \frac{V_{CE2} - V_{CE1}}{I_{C2} - I_{C1}}$$

Determinación de VA

Características de entrada del BJT

 $R_C = 1k\Omega$


 $R_B = 4.3k\Omega$, $10k\Omega$

Voltaje V_{CC} = 12 a 20 V

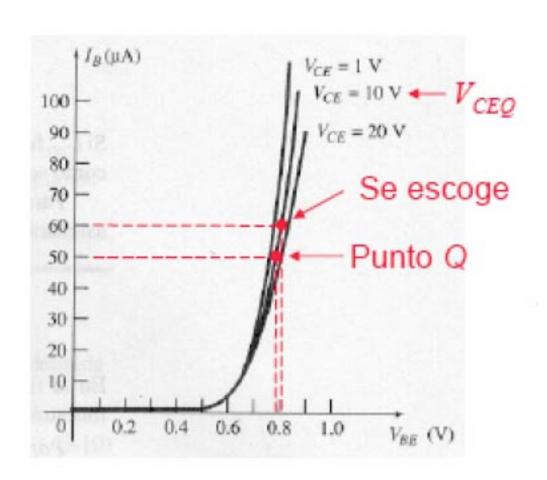
Generador:

 $V_{max} = 10V$ Voffset= 10V f = 1 kHz

Al variar V_{CC} se modifica ligeramente la curva observada en la pantalla.

La figura es la curva característica del diodo de la juntura BE.

Para medir r_{π} (h_{ie})


Sobre la misma curva $(V_{CE} constante)$:

Se mide I_{B1} y V_{BE1}

Se mide I_{B2} y V_{BE2}

El parámetro r_{π} es

$$r_{\pi} = \frac{V_{CB2} - V_{CB1}}{I_{B2} - I_{B1}}$$

AMPLIFICADOR EMISOR COMÚN CON RESISTENCIA DE EMISOR PARA POLARIZACIÓN

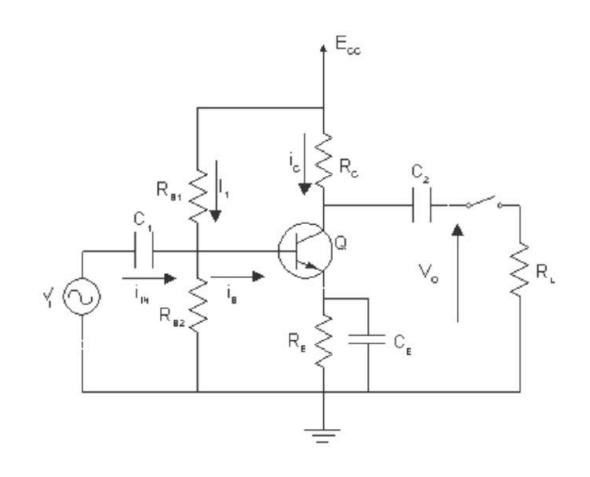
Transistor 2N3904

$$V_{CC} = 20V$$

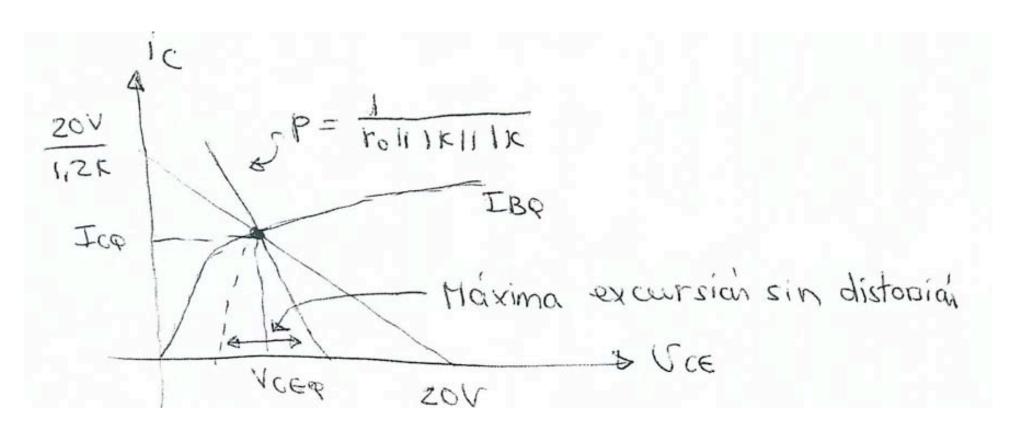
$$R_{B1} = 30k\Omega$$

$$R_{B2} = 4.7 k\Omega$$

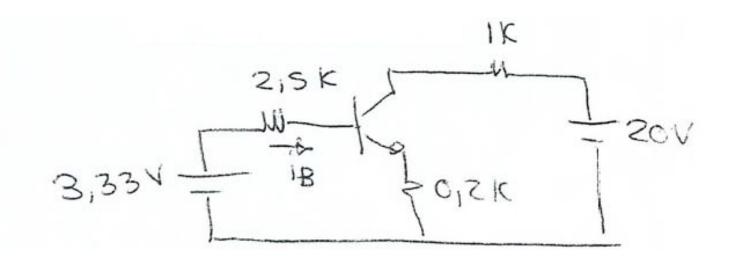
$$R_C = 1k\Omega$$


$$R_E = 200\Omega$$

$$R_L = 1k\Omega$$


$$C_1 = 22\mu F$$

$$C_2 = 1\mu F$$


 $C_E = 470 \mu F$ electrolítico

RECTAS DE CARGA

PUNTO DE OPERACIÓN

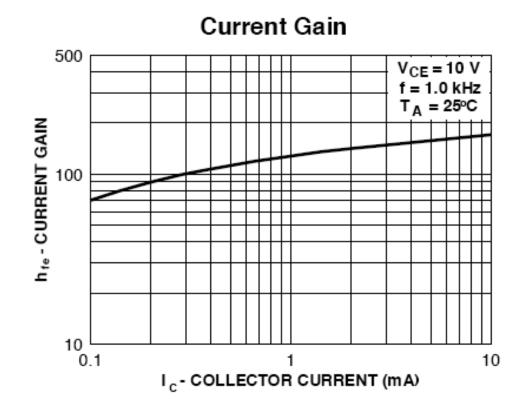
CÁLCULO DEL PUNTO DE OPERACIÓN

$$18 = \frac{3,33-0,1}{2,5+0,2\times Rei} = 0,116 \text{ m/A}$$
 Pento da
 $1c = 11,6 \text{ m/A}$ Crevación.
 $1c = 11,6 \text{ m/A}$ en la
 $1c = 26V - 1,2\times 11,6 = 6,08 \text{ V}$ 3 anc
activa.

PARÁMETROS CON EL MODELO HÍBRIDO π

$$Q_{m} = \frac{Ic}{VT} = \frac{11.6 \text{ mH}}{26 \text{ mV}} = 0.44607 = 446 \text{ m} 25$$

$$T_{\Pi} = \frac{VT}{18} = \frac{0.026 \text{ V}}{0.116 \text{ mH}} = 224.52$$

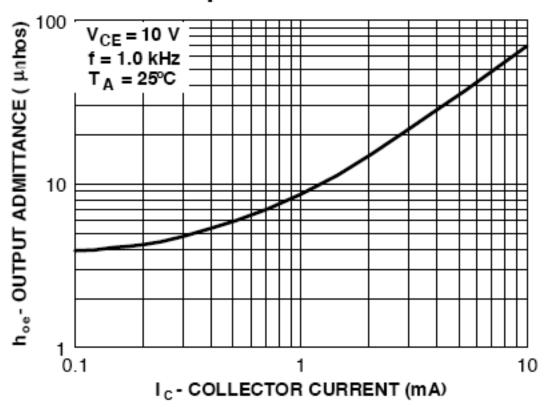

$$P_{0} = 100$$

PARÁMETROS HÍBRIDOS A PARTIR DE LA INFORMACIÓN DEL FABRICANTE

Ganancia de corriente h_{fe}

h_{fe} para 11,6 mA:

 $h_{fe} = 180$

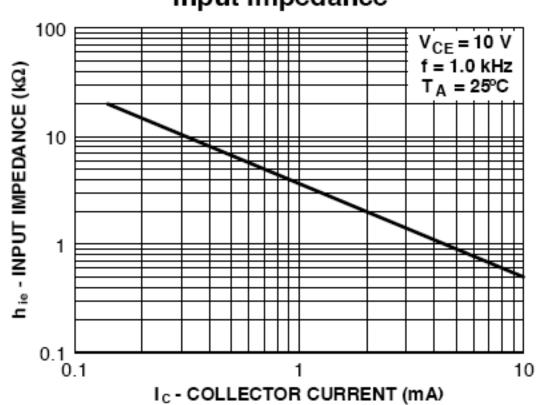

PARÁMETROS HÍBRIDOS A PARTIR DE LA INFORMACIÓN DEL FABRICANTE

Impedancia de salida hoe

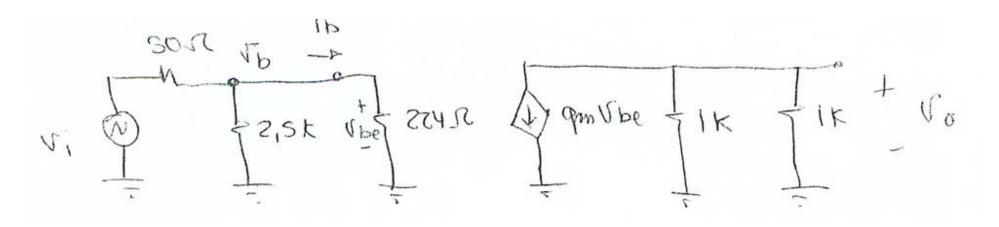
hoe para 11,6 mA:

 $h_{oe} = 70 \mu mohs$

Output Admittance


PARÁMETROS HÍBRIDOS A PARTIR DE LA INFORMACIÓN DEL FABRICANTE

Impedancia de entrada hie


h_{ie} para 11,6 mA

 $h_{ie} = 400\Omega$

Input Impedance

ANÁLISIS CON EL MODELO HÍBRIDO π

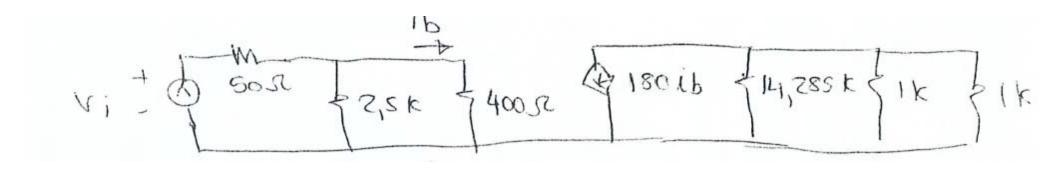
Equivalente Thevenin

$$V_i = \frac{2.5 \, \text{k}}{2.55 \, \text{k}}$$
 $V_i = 0.98 \, \text{U}_i$

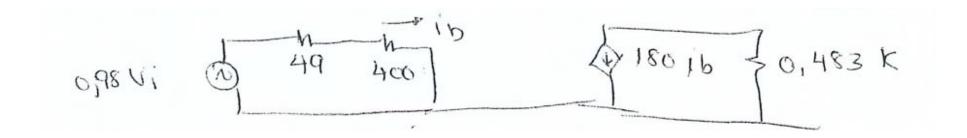
$$V_i = \frac{2.55 \, \text{k}}{2.55 \, \text{k}} = 0.049 \, \text{k} \, \text{R}$$

$$R_{TH} = \frac{2.5 \, \text{ll} \, \text{0.05}}{2.55 \, \text{k}} = 0.049 \, \text{k} \, \text{R}$$

Modelo de pequeña señal


$$C_0 = -144'30! \quad A_1 = 0'800!$$

$$C_0 = -144'30! \quad A_2 = -0'20!$$


$$A_1 = 0'800!$$

$$A_2 = -144'30! \quad A_3 = -144'3$$

ANÁLISIS CON EL MODELO DE PARÁMETROS HÍBRIDOS

En este caso está incluida la resistencia en el circuito de salida

Cálculos

$$ib = \frac{0.98 \text{ U i}}{0.449 \text{ K}} \qquad \text{U}_0 = -180 \times 0.483 \text{ ib} = -180 \times 0.483 \frac{0.98 \text{ U}_1}{0.449}$$

$$H_V = \frac{\text{U}_0}{\text{U i}} = -189.7$$

Resistancia de entrada:

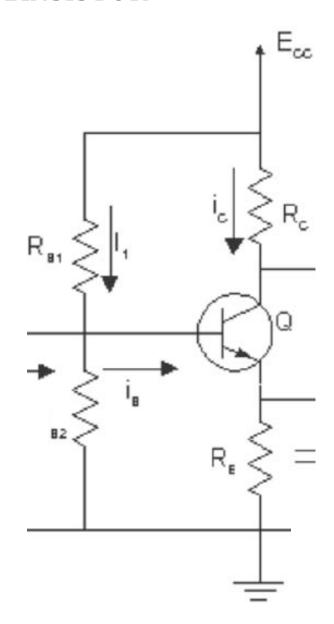
Ri = 2,5 KM 0,224 K = 205 a Modulo hibrido TT Ri = 2,5 KM 400 SZ = 344 & Modulo parcinetro hibrido

Resistancia de salida

Ro = 0,5 k can al modela hibrida TI Ro = 0,483 k con el modela de parcinetros hibridas.

EN EL LABORATORIO POLARIZACIÓN DEL TRANSISTOR

En primer lugar se monta solo el circuito DC.

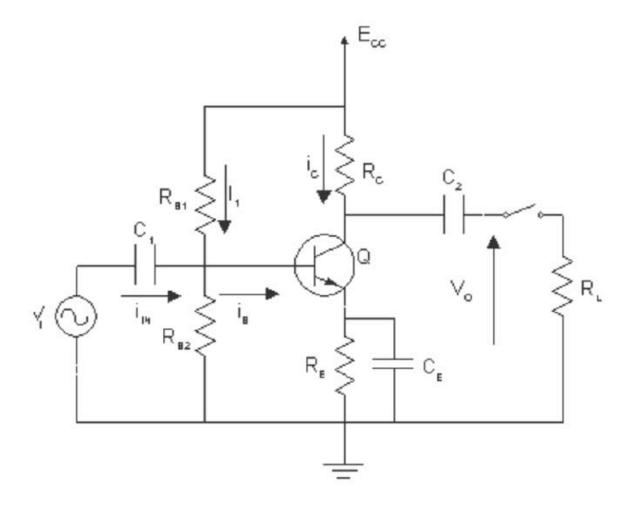

* Se determina el punto de operación midiendo con el multímetro:

 V_{BE}

 V_{CE}

$$IC = V_{RC} / R_C$$

* Solo cuando el punto de operación se encuentre en un rango cercano a los valores deseados, se puede continuar con el estudio en AC.

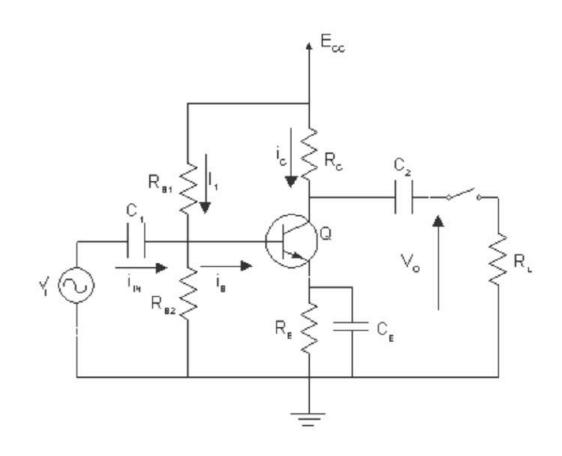

EL EMISOR COMÚN COMO AMPLIFICADOR

* Se enciende la fuente DC NOTA: COLOCAR UN DIVISOR DE VOLTAJE A LA SALIDA DEL GENERADOR PARA AJUSTAR VI, PORQUE EL VOLTAJE MÍNIMO

* Se aplica el voltaje de salida del generador

ES MUY ALTO

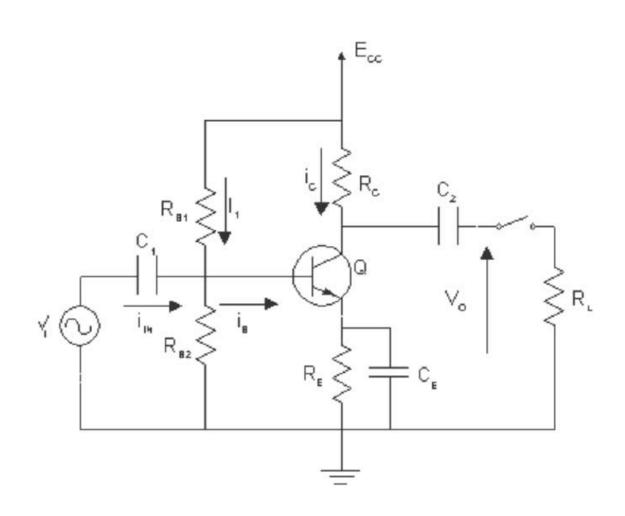
* Se observa el Vimax que no produce


distorsión a la salida y luego se aumenta hasta producir distorsión

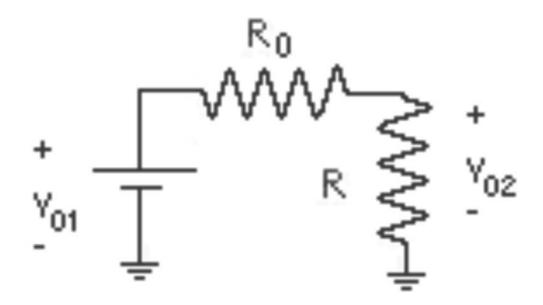
MEDICIÓN DE LAS GANANCIA DE VOLTAJE

Ganancia de voltaje:

 $A_V = V_O / V_i$


NOTA: COLOCAR UN
DIVISOR DE VOLTAJE A
LA SALIDA DEL
GENERADOR PARA
AJUSTAR VI, PORQUE EL
VOLTAJE MÍNIMO ES
MUY ALTO

MEDICIÓN DE LA RESISTENCIA DE ENTRADA


- *Se coloca una resistencia de $100~\Omega$ en serie con C1
- * Se enciende la fuente DC
- * Se enciende el generador
- * Se mide la corriente en R_{P1} y el voltaje en la base del transistor V_{BE}

$$R_{I} = \frac{V_{BE}}{V_{R_{P1}}/R_{P1}}$$

MEDICIÓN DE LA RESISTENCIA DE SALIDA

- * Se aplica un voltaje de entrada que produzca una salida de 3 o 4 Vpp y se mide cuidadosamente el voltaje de salida V_{01} .
- * Se coloca una resistencia de carga de R (por ejemplo $1k\Omega$) y se mide cuidadosamente el voltaje de salida V_{02} .
- *Con esos datos se puede plantear el circuito mostrado y determinar el valor de Ro.

RESPUESTA EN FRECUENCIA

- * Se enciende la fuente DC
- * Manteniendo el voltaje de salida del generador constante y asegurándose que el amplificador no entre en saturación, se hace un barrido de frecuencia y se toman las correspondientes mediciones a la salida, para poder realizar un diagrama de amplitud vs. frecuencia y otro de desfasaje vs. frecuencia, en un rango comparable con el que se realizó la simulación