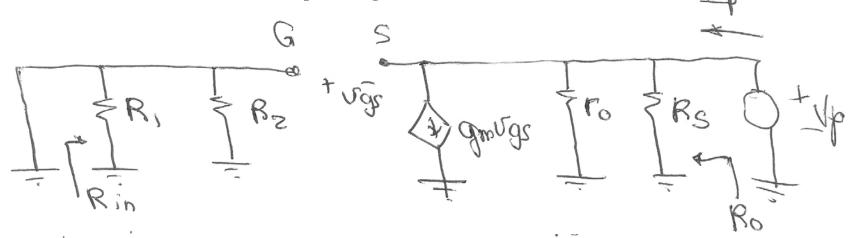

AMPLIFICADOR DRAIN COMÚN

* Circuito equivalente con el modelo π incluyendo r_o

* Ganancia de voltaje


Se define $R_p = R_C//R_L//r$

$$Av = \frac{vo}{vo} = \frac{gm Rp}{1 + gm Rp}$$
 Es menor que 1

La salida está en fase con la entrada

Resistencia de entrada

Resistencia de salida $V_p = -v_{gs}$

IP =
$$\frac{Vp}{Rs} + \frac{Vp}{ro} + Vpgm = Vp\left(\frac{1}{Rs} + \frac{1}{ro} + gm\right)$$

$$R_0 = \frac{\sqrt{p}}{Tp} = \frac{1}{R_s + \frac{1}{R_s}}$$


 $R_0 = R_s / / r_0 / / (1/g_m)$

Ganancia de corriente

$$\begin{aligned} \text{Lin} &= \frac{\text{Vin}}{\text{Rin}} \quad \text{Lo} &= \frac{\text{Vo}}{\text{Rin}} \\ \text{Alin} &= \frac{\text{Lo}}{\text{Li}} = \frac{\text{Vo}}{\text{Ri}} \cdot \frac{\text{Rin}}{\text{Vin}} = \frac{\text{gmRp+1}}{\text{Rc}} \cdot \frac{\text{Rc}}{\text{Rc}} \end{aligned}$$

Depende del valor de las resistencias de polarización

EJERCICIO DE AMPLIFICADOR DRAIN COMÚN

* Los parámetros del MOSFET

En saturación:
$$I_D = \frac{1}{2} k'_n \frac{W}{L} (V_{GS} - V_t)^2$$

En los manuales aparece G_{FS} "Forward Transconductance": Relación entre la variable de salida (I_D) y la de entrada V_{GS} para una corriente I_D específica. Esta definición es similar al g_m para pequeña señal, aplicada a valores DC. Para el MOSFET VN10K:

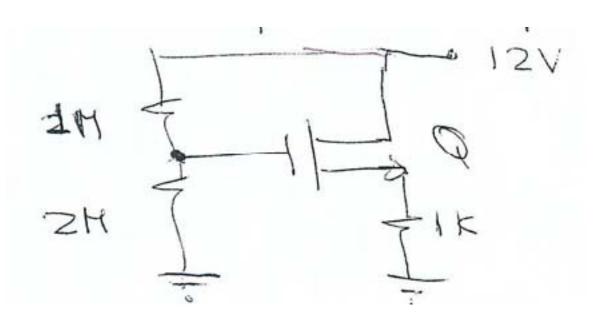
 G_{FS} Forward transductance 100 - - mmho $V_{DS} = 10V$, $I_D = 500$ mA

Para trabajar con las ecuaciones de polarización se define:

$$i_D = K(V_{GS} - V_{th})^2 \qquad K = \frac{1}{2}k'\frac{W}{L} \qquad k'\frac{W}{L} = 2K$$

Utilizando una de las ecuaciones para g_m y aplicándola a G_{FS} (identificada también como G_m):

$$g_{m} = k' \frac{W}{L} \sqrt{\frac{2I_{D}}{k' \frac{W}{L}}} \qquad k' \frac{W}{L} = 2K$$


$$G_{m} = k' \frac{W}{L} \sqrt{\frac{2I_{D}}{k' \frac{W}{L}}} = 2K \sqrt{\frac{2I_{D}}{2K}} = 2K \sqrt{\frac{I_{D}}{K}} = 2\sqrt{KI_{D}}$$

$$G_{m} = 2\sqrt{KI_{D}}$$

Con los datos del ejercicio:

$$100 \frac{mA}{V} = 2\sqrt{K500mA} \qquad K = 5 \frac{mA}{V^2} \qquad i_D = 5 \frac{mA}{V^2} (V_{GS} - V_{th})^2$$

* Cálculo del punto de operación suponiendo saturación

Voltaje V_{GG}:

$$V_{GG} = \frac{2M\Omega}{3M\Omega} 12V = 8V$$

$$V_t \approx 2V$$

$$ib = k (VGS-VE)^2 VGG = 8V = VGS + ib \times IK$$

$$12V = VDS + ib \times IK VGS = 8 - ib \times IK$$

$$10 = K(8-10-2)^2 = K(6-10)^2$$

st Determinación de la corriente I_D .

$$i_0 = 5(6-i_0)^2$$

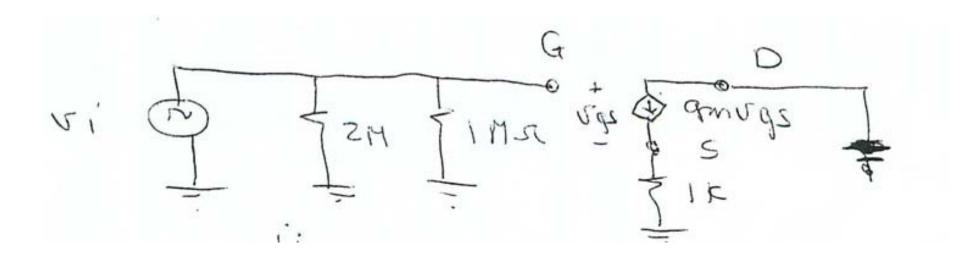
$$1b = \frac{61 \pm \sqrt{3721 - 3600}}{10}$$

$$10 = \frac{61 \pm \sqrt{3721 - 3600}}{10} = \frac{61 \pm 11}{10} = 7.2mA$$

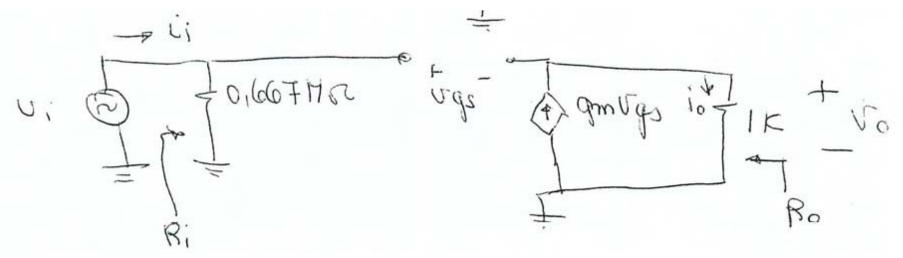
$$\sqrt{61 - 11} = 5mA$$

$$\sqrt{61 - 11} = 5mA$$

En saturación


$$VGS = 3V$$

$$VDS = FV$$


$$ID = 5mA$$

* Análisis de pequeña señal. Parámetros

* Modelo de pequeña señal

* Modelo de pequeña señal arreglado

* Ganancia de voltaje

$$C_0 = \frac{1}{4m} c_0 = 1 = \frac{10mH}{V} c_0 = \frac{1}{mH} = 10 c_0$$
 $C_0 = \frac{1}{mH} c_0 = 1 = \frac{1}{mH} c_0 = \frac{1}{mH} = \frac{1}{$

* Resistencia de entrada

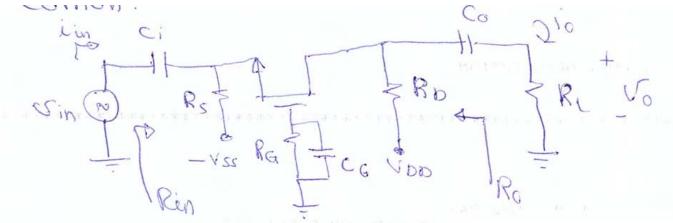
* Resistencia de salida

$$\frac{1}{\sqrt{6}} = \frac{1}{\sqrt{1}} = \frac{1$$

* Ganancia de corriente

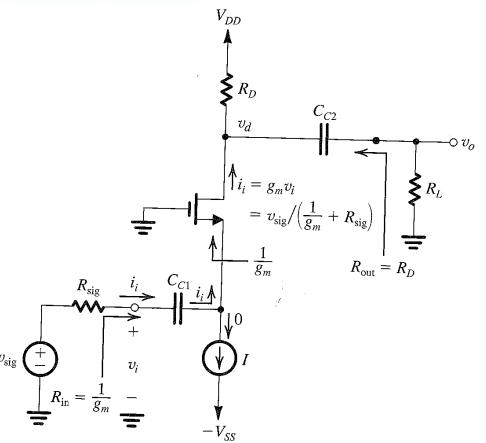
$$E_{1} = \frac{i_{0}}{i_{1}} = \frac{U_{0}}{i_{1}} = \frac{U_{0}}{i_{1}} = \frac{U_{0}}{i_{1}} = \frac{0.0}{i_{1}} = \frac{0.0}{i_{1}$$

* Parámetros del amplificador


Tiene ganancia de voltaje menor que 1

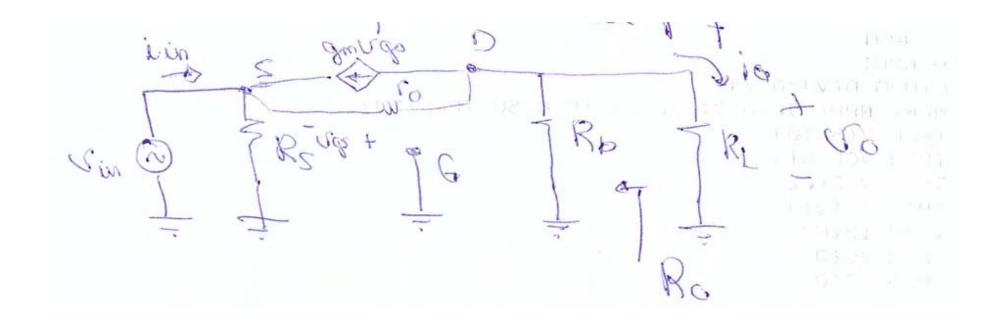
Resistencia de entrada muy elevada

Resistencia de salida baja

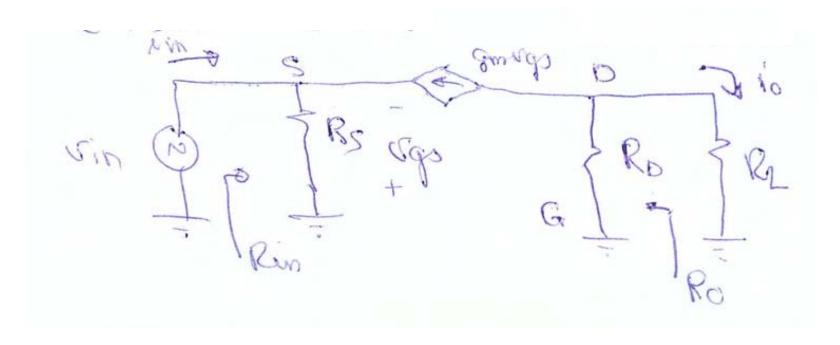

$$A_{0} = 0.9$$

 $A_{i} = 600.3$
 $B_{i} = 667 KR$
 $R_{0} = 98.9 MR$

AMPLIFICADOR GATE COMÚN


La resistencia R_G evita la acumulación de carga estática en Gate, y el condensador C_G asegura que Gate esté a tierra para el análisis de pequeña señal.

Hay que calcular el punto de operación y los parámetros del modelo de pequeña señal.



MODELO DE PEQUEÑA SEÑAL

 $\begin{array}{c} \text{Con modelo } \pi \\ r_o \text{ no se va a tomar en cuenta} \end{array}$

* Del modelo π simplificado:

* Ganancia de voltaje:

Ganancia de corriente

$$lin + gmVgs = -Vgs$$

$$lo = \frac{RD}{RD + RL} (-gmVgs)$$

$$lin = -Vgs (gm + \frac{1}{Rs})$$

$$Vgs = -\frac{lin}{gm + \frac{1}{Rs}}$$

$$lo = \frac{RD}{RD + RL} (gm \frac{lin}{gm + \frac{1}{Rs}})$$

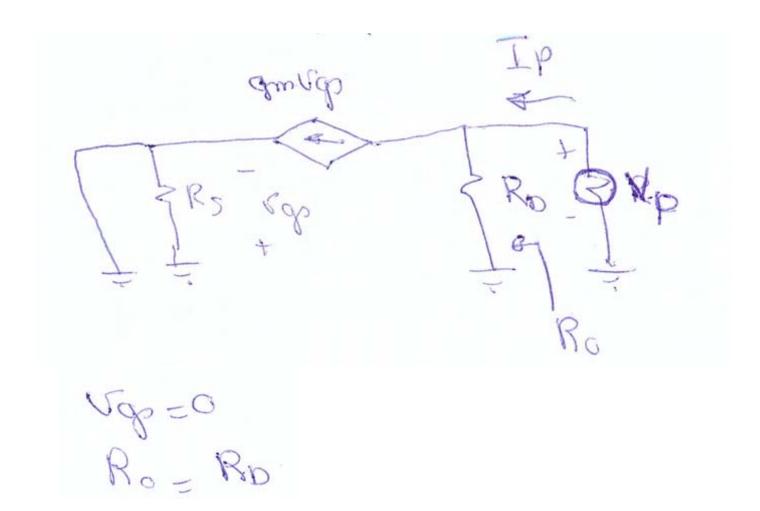
$$Ai = \frac{lo}{lin} = \frac{RD}{RD + RL} \frac{gm}{gm + \frac{1}{Rs}}$$

Es menor que 1

Resistencia de entrada

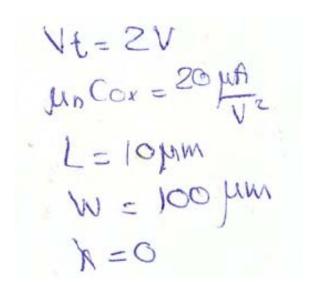
$$\lim_{N \to \infty} \frac{1}{2} = -\frac{\sqrt{3}}{2}$$

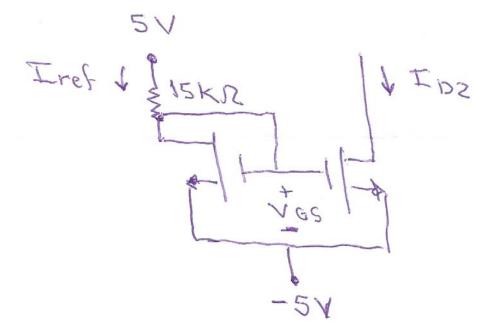
$$-\sqrt{3} = \sqrt{3}$$


$$\lim_{N \to \infty} \frac{1}{2} = \frac{1}{2}$$

$$\lim_{N \to \infty} \frac{1}{2} = \frac{1}{2}$$

$$\lim_{N \to \infty} \frac{1}{2} = \frac{1}{2}$$


Esta configuración tiene una baja resistencia de entrada.


* Resistencia de salida

ESPEJO DE CORRIENTE CON MOSFET

Hallar los valores de los voltajes y corrientes en el circuito.

 $V_{GD} = 0 < Vt = 2$ Están en saturación

Ecuaciones en el circuito MOSFET de la izquierda $I_{ref} = I_D$:

Ecuación de la corriente en el MOSFET. Cálculo de ID

$$T_{D} = 0,1 (8-15T_{D})^{2}$$

$$T_{D} = 0,1 (64-240T_{D}+225T_{D}^{2})$$

$$T_{D} = 6,4-24T_{D}+22,5T_{D}^{2}$$

$$22,5T_{D}^{2}-25T_{D}+6,4=0$$

$$25+\sqrt{625-576}=0,71mA$$

$$T_{D} = \frac{25+\sqrt{625-576}}{22,5\times2} = 0,4mA$$

Para I_D = 0,71mA tenemos V_{GS} = 0,65V mientras que para I_D = 0,4mA tenemos V_{GS} = 4V.

La corriente I_{D2} es igual a I_D y constituye la fuente de corriente que puede utilizarse para polarizar otros amplificadores.

PREPARACIÓN DE LA PRÁCTICA 4

CARACTERÍSTICAS DEL MOSFET. AMPLIFICADOR DRAIN COMÚN ESPECIFICACIONES DEL TRANSISTOR MOSFET CANAL N VN10K

Product Summary

BV _{DSS} /BV _{DGS}	R _{DS(ON)} (max)	l _{DSS} (min)
60∨	5.0Ω	750mA

Pin Configuration

General Description

This enhancement-mode (normally-off) transistor utilizes a vertical DMOS structure and Supertex's well-proven, silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown.

GATE

TO-92

Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	BV _{DSS}
Drain-to-gate voltage	BV _{DGS}
Gate-to-source voltage	±30V
Operating and storage temperature	-55°C to +150°C

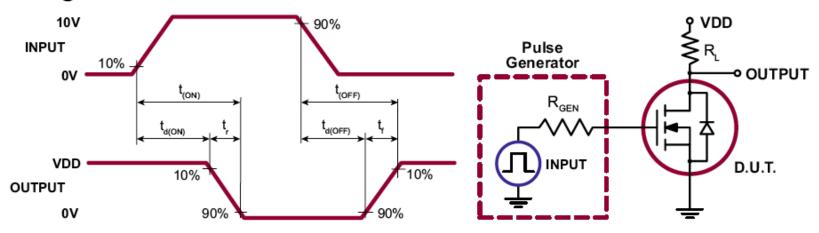
Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Typical Thermal Resistance

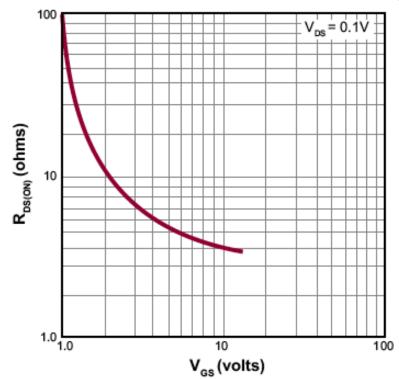
Package	$\boldsymbol{\theta}_{_{ja}}$
TO-92	132°C/W

Thermal Characteristics

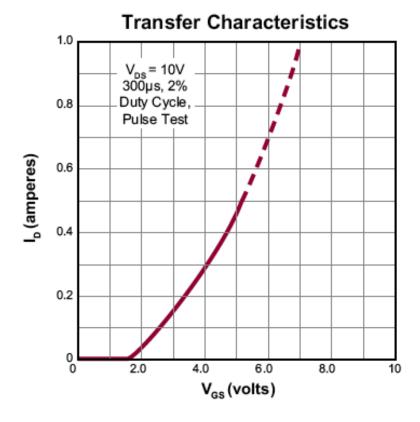
Package	l _D (continuous) [†]	l _D (pulsed)	Power Dissipation @T _c = 25°C	I_{DR}^{t}	l _{DRM}	
TO-92	310mA	1.0A	1.0W	310mA	1.0A	

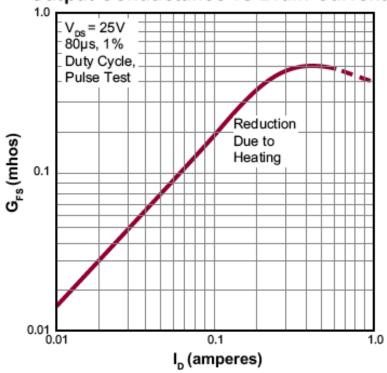

Notes:

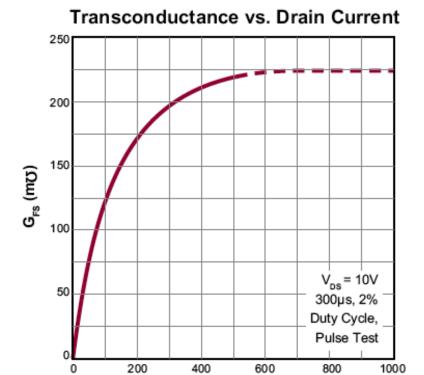
⁺ I_D (continuous) is limited by max rated T_I . (VN0106N3 can be used if an I_D (continuous) of 500mA is needed.)


Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise specified)

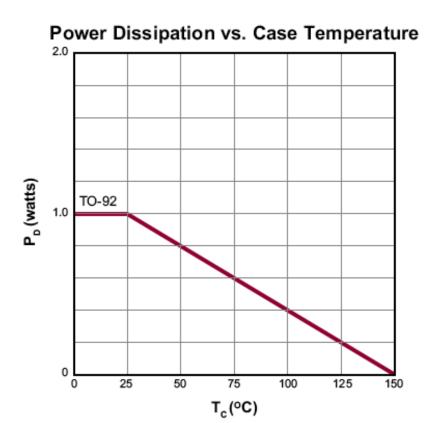
Sym	Parameter	Min	Тур	Max	Units	Conditions	
BV _{DSS}	Drain-to-source breakdown voltage	60	-	-	V	$V_{GS} = 0V, I_{D} = 100 \mu A$	
V _{GS(th)}	Gate threshold voltage	8.0	-	2.5	V	$V_{GS} = V_{DS}$, $I_D = 1.0 \text{mA}$	
$\Delta V_{GS(th)}$	Change in V _{GS(th)} with temperature	-	-3.8	-	mV/°C	$V_{GS} = V_{DS}$, $I_{D} = 1.0$ mA	
I _{GSS}	Gate body leakage	-	-	100	nA	V _{GS} = 15V, V _{DS} = 0V	
	Zero gate voltage drain current	-	-	10	μA	V _{GS} = 0V, V _{DS} = 45V	
I _{DSS}		-	-	500		V _{GS} = 0V, V _{DS} = 45V, T _A = 125°C	
I _{D(ON)}	On-state drain current	0.75	-	-	Α	V _{GS} = 10V, V _{DS} = 10V	
В	Static drain-to-source on-state resistance	-	-	7.5	Ω	$V_{GS} = 5.0V, I_{D} = 200mA$	
R _{DS(ON)}		-	-	5.0		V _{GS} = 10V, I _D = 500mA	
$\Delta R_{DS(ON)}$	Change in R _{DS(ON)} with temperature	-	0.7	-	%/°C	V _{GS} = 10V, I _D = 500mA	
G _{FS}	Forward transductance	100	-	-	mmho	V _{DS} = 10V, I _D = 500mA	
C _{ISS}	Input capacitance	-	48	60		V _{GS} = 0V,	
C _{oss}	Common source output capacitance	-	16	25	pF	V _{DS} = 25V,	
C _{RSS}	Reverse transfer capacitance	-	2.0	5.0		f = 1.0MHz	
t _(ON)	Turn-on time	-	-	10	ns	V _{DD} = 15V, I _D = 600mA,	
t _(OFF)	Turn-off time	-	-	10	113	$R_{GEN} = 25\Omega$	
V _{SD}	Diode forward voltage drop	-	8.0	-	V	V _{GS} = 0V, I _{SD} = 500mA	
t _{rr}	Reverse recovery time	_	160	-	ns	V _{GS} = 0V, I _{SD} = 500mA	


Switching Waveforms and Test Circuit

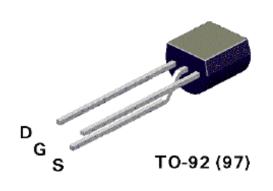

On-Resistance vs. Gate-to-Source Voltage

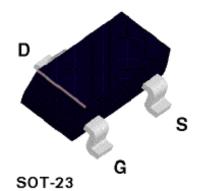


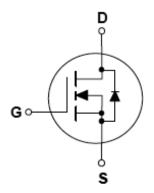
Resistencia en la región triodo



 $I_D(mA)$

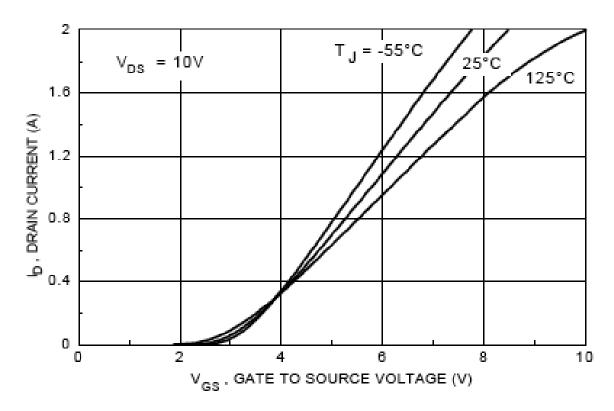

ESPECIFICACIONES DEL TRANSISTOR MOSFET CANAL N BS170

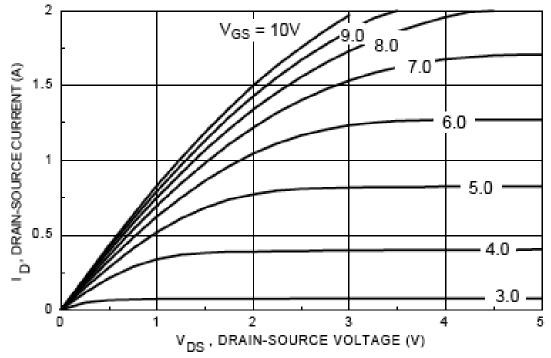

General Description


These N-Channel enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. These products have been designed to minimize on-state resistance while provide rugged, reliable, and fast switching performance. They can be used in most applications requiring up to 500mA DC. These products are particularly suited for low voltage, low current applications such as small servo motor control, power MOSFET gate drivers, and other switching applications.

Features

- High density cell design for low R_{DS(ON)}.
- Voltage controlled small signal switch.
- Rugged and reliable.
- High saturation current capability.





Absolut	te Maximum Ratings T _A = 25°C unless of	otherwise noted		
Symbol	Parameter	BS170	MMBF170	Units
V _{DSS}	Drain-Source Voltage		V	
V_{DGR}	Drain-Gate Voltage ($R_{ss} \leq 1M\Omega$)		V	
$V_{\rm GSS}$	Gate-Source Voltage	±	V	
I _D	Drain Current - Continuous	500	500	mA
	- Pulsed	1200	800	
P _D	Maximum Power Dissipation	830	300	mW
	Derate Above 25°C	6.6	2.4	mW/°C
T_{J}, T_{STG}	Operating and Storage Temperature Range	-551	°C	
T _L	Maximum Lead Temperature for Soldering Purposes, 1/16" from Case for 10 Seconds	300		°C
THERMA	L CHARACTERISTICS			•
R _{BJA}	Thermal Resistacne, Junction-to-Ambient	150	417	°C/W

Symbol	Parameter	Conditions	Type	Min	Тур	Max	Units
OFF CHA	RACTERISTICS						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 100 \mu\text{A}$	All	60			٧
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 25 V, V _{GS} = 0 V	All			0.5	μA
I _{GSSF}	Gate - Body Leakage, Forward	V _{GS} = 15 V, V _{DS} = 0 V	All			10	nA
ON CHAR	ACTERISTICS (Note 1)						
$V_{\text{GS(th)}}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	All	0.8	2.1	3	V
R _{ds(on)}	Static Drain-Source On-Resistance	V _{gs} = 10 V, I _D = 200 mA	All		1.2	5	Ω
	Forward Transconductance	V _{DS} = 10 V, I _D = 200 mA	BS170		320		mS
		$V_{DS} \ge 2 V_{DS(on)}, I_D = 200 \text{ mA}$	MMBF170		320		1
DYNAMIC	CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = 10 \text{ V}, \ V_{GS} = 0 \text{ V},$	All		24	40	pF
Coss	Output Capacitance	f = 1.0 MHz	All		17	30	pF
C _{rss}	Reverse Transfer Capacitance		All		7	10	pF
SWITCHIN	IG CHARACTERISTICS (Note 1)	•				•	
t _{on}	Tum-On Time	$V_{DD} = 25 \text{ V}, I_{D} = 200 \text{ m A},$ $V_{GS} = 10 \text{ V}, R_{GEN} = 25 \Omega$	BS170			10	ns
		$V_{DD} = 25 \text{ V}, I_{D} = 500 \text{ mA},$ $V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$	MMBF170			10	
t _{orr}	Tum-Off Time	$V_{DD} = 25 \text{ V}, I_{D} = 200 \text{ m A},$ $V_{GS} = 10 \text{ V}, R_{GEN} = 25 \Omega$	BS170			10	ns
		$V_{DD} = 25 \text{ V}, I_{D} = 500 \text{ mA},$ $V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$	MMBF170			10	

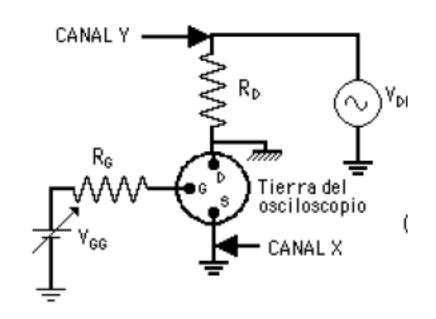
CIRCUITOS PARA LA PRÁCTICA Nº 4

Características de salida del MOSFET CANAL N

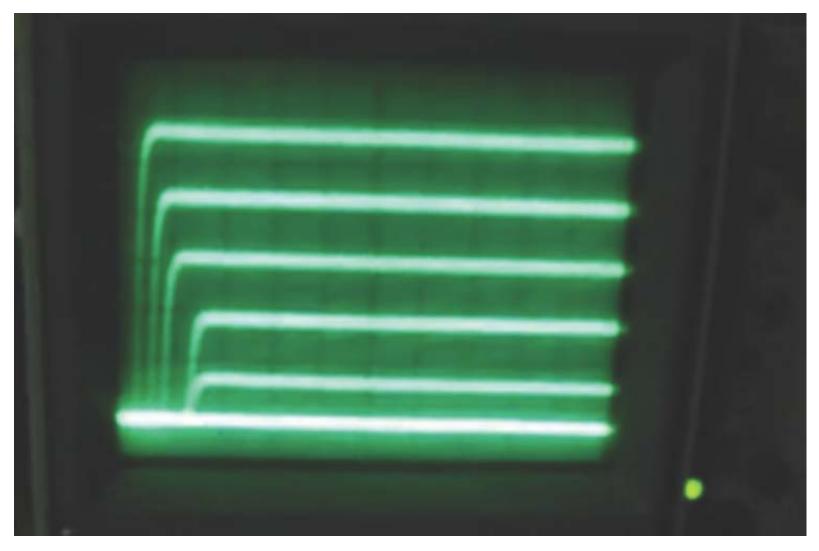
El transistor se dibuja como un componente real para indicar que no es parte de un amplificador.

 $R_G = 1M\Omega$

 $R_D = 1k\Omega$

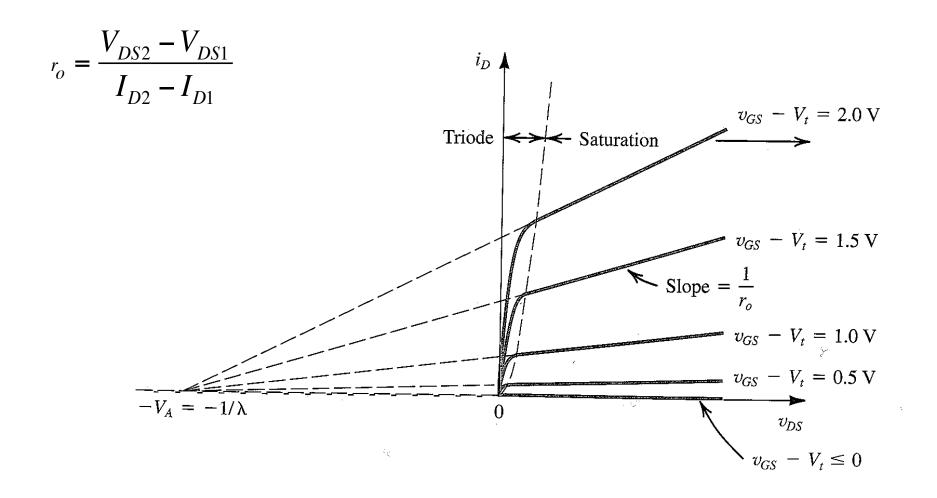

Voltaje V_{BB} = De 0 a 2V

Generador: $V_{max} = 3V$ Voffset= 3V


f = 1 kHz

Para cada valor de V_{GG} se observa una sola curva de I_D vs. V_{DS}.

Hay que invertir el canal X para ver las curvas con la orientación adecuada.



En la pantalla del osciloscopio

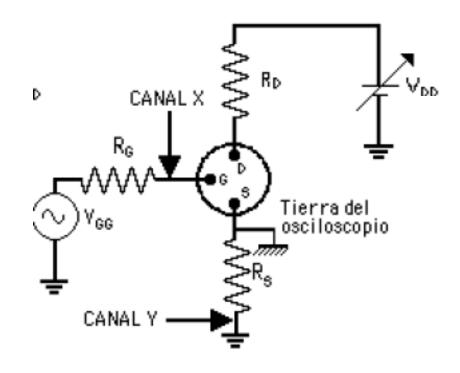
Para medir r_{ds} y determinar el valor de V_A.

Curva en pantalla: Se selecciona un par de puntos sobre la curva y se determina la pendiente de la misma. El inverso es la resistencia r_o . Con la pendiente y V_{DS} se calcula V_A .

Características de transferencia del MOSFET

 $R_G = 1M\Omega$

 $R_D = 1k\Omega$


 $R_S = 510\Omega$

Voltaje V_{DD} = De 0 a 2V

Generador: $V_{max} = 3V$ Voffset= 3V

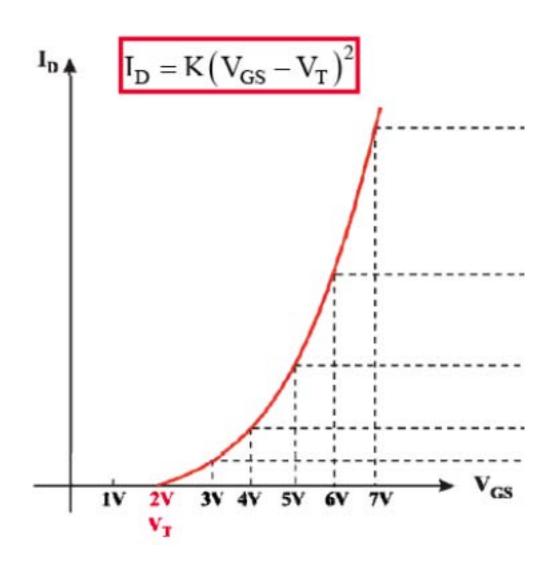
f = 1 kHz

La figura es la curva característica de transferencia del MOSFET.

Hay que invertir el canal X para ver las curvas con la orientación adecuada.

Para medir g_m y V_t en la característica de transferencia

V_t se mide determinando el voltaje en el que la curva comienza a crecer.


Para medir g_m

Se escoge un punto en el que se mide I_{D1} y V_{GS1}

Se escoge un otro punto en el que se mide I_{D2} y V_{GS2}

El parámetro g_m es

$$g_m = \frac{I_{D2} - I_{D1}}{V_{GS2} - V_{GS1}}$$

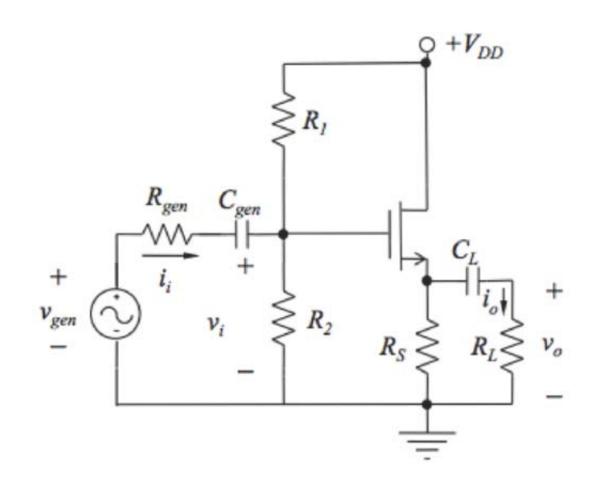
AMPLIFICADOR DRAIN COMÚN

Transistor BS170

$$V_{DD} = 12V$$

 $R_1 = 1M\Omega$

 $R_2 = 2M\Omega$


 $R_S = 1k\Omega$

 $R_L = 1k\Omega$

 $C_{gen} = 100nF$

 $C_L = 100 nF$

 $V_t \approx 2V$ $g_{FS} = 320 \text{ mS } @ 200 \text{ mA}$

CÁLCULOS INICIALES

K = 128

$$Vas = 8 - ib \times 1K$$

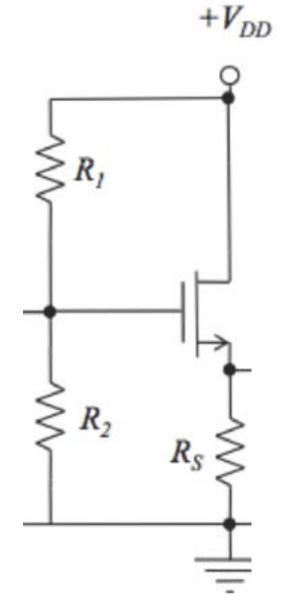
 $ib = K(8 - ib - 2) = K(6 - ib)^{2}$

Valores de I_D = 6,22mA y 5,79mA

V_{GS} válido: 2,24V

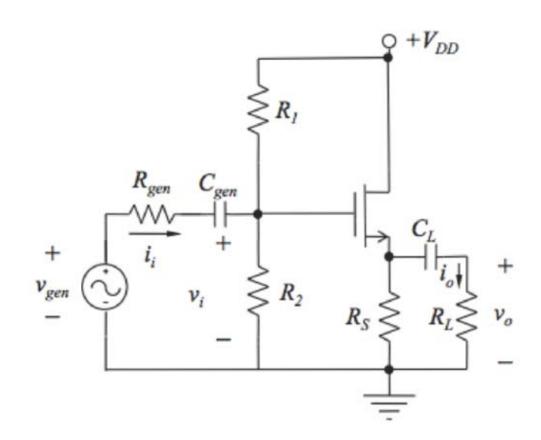
EN EL LABORATORIO POLARIZACIÓN DEL TRANSISTOR

En primer lugar se monta solo el circuito DC.


* Se determina el punto de operación midiendo con el multímetro:

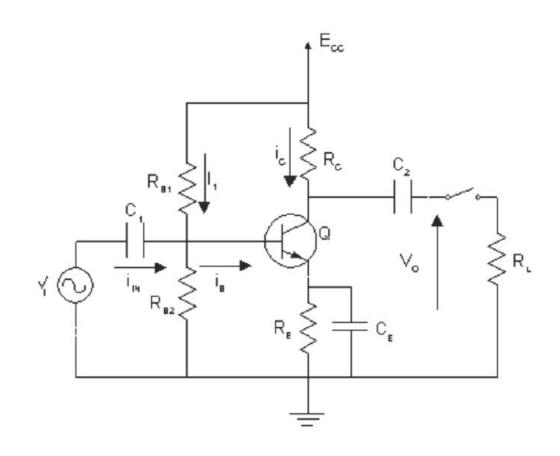
 V_{GS} : Probar haciendo una medición directa y luego una indirecta V_G - V_S

 V_{DS}

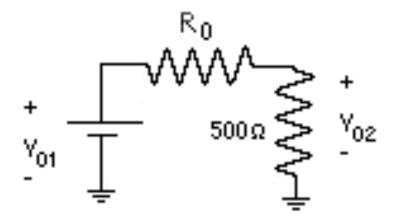

$$I_D = V_D / R_D$$

* Solo cuando el punto de operación se encuentre en un rango cercano a los valores deseados, se puede continuar con el estudio en AC.

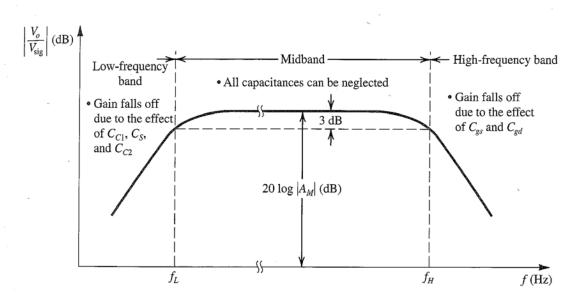
EL DRAIN COMÚN COMO AMPLIFICADOR


- * Se enciende la fuente DC
- * Se aplica el voltaje de salida del generador, a través de un divisor de voltaje con un potenciómetro si es necesario para obtener las amplitudes deseadas
- * Se selecciona el V_{imax} de forma que no haya distorsión a la salida
- * Se aumenta V_{imax} hasta producir distorsión a la salida.
- * Se registran varias formas de onda de la entrada con la salida.

MEDICIÓN DE LA GANANCIA DE VOLTAJE


Ganancia de voltaje:

Se mide el voltaje AC sobre la carga y el voltaje AC aplicado al Gate A_V = Vo / Vi


MEDICIÓN DE LA RESISTENCIA DE SALIDA

- * Se aplica un voltaje de entrada que produzca una salida de 3 o 4 Vpp y se mide cuidadosamente el voltaje de salida V_{01} .
- * Se coloca una resistencia de carga de 1K y se mide cuidadosamente el voltaje de salida V_{02} .
- *Con esos datos se puede plantear el circuito mostrado y determinar el valor de Ro.

RESPUESTA EN FRECUENCIA

- * Se enciende la fuente DC
- * Manteniendo el voltaje de salida del generador constante y asegurándose que el amplificador no entre en saturación, se hace un barrido de frecuencia y se toman las correspondientes

mediciones a la salida, para poder realizar un diagrama de amplitud vs. frecuencia y otro de desfasaje vs. frecuencia, en un rango comparable con el que se realizó la simulación.

* NOTA: Cuando en la preparación obtenga la respuesta en frecuencia del amplificador bajo estudio, seleccione que el eje vertical esté en dB, e identifique la frecuencia de corte inferior y la frecuencia de corte superior.