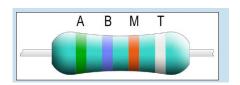

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 9

COMPONENTES PASIVOS

RESISTENCIAS O RESISTORES


CONDENSADORES O CAPACITORES

INDUCTORES O BOBINAS

RESISTENCIAS O RESISTORES

DEFINICIÓN

- * Una resistencia es un componente circuital cuya principal característica es la de transformar la **energía eléctrica** que recibe en **energía térmica**, la cual se disipa por medio de radiación, convección y conducción térmica.
- * Su parámetro característico es la "Resistencia", representada con la letra R.
- * En este elemento puede considerarse despreciable la energía almacenada en el campo eléctrico (capacitancia parásita) y en el campo magnético (inductancia parásita) existentes en el componente, a menos que se trabaje a muy altas frecuencias.

TIPOS DE RESISTENCIAS FIJAS

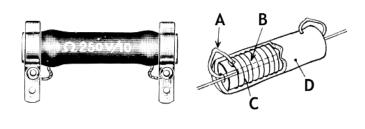
RESISTENCIAS DE CARBÓN

AGLOMERADAS

CAPA DELGADA

CAPA GRUESA

RESISTENCIAS DE METÁLICAS


DE ALAMBRE BOBINADO

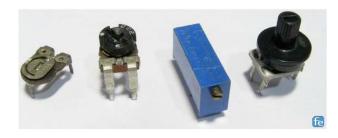
CAPA METÁLICA

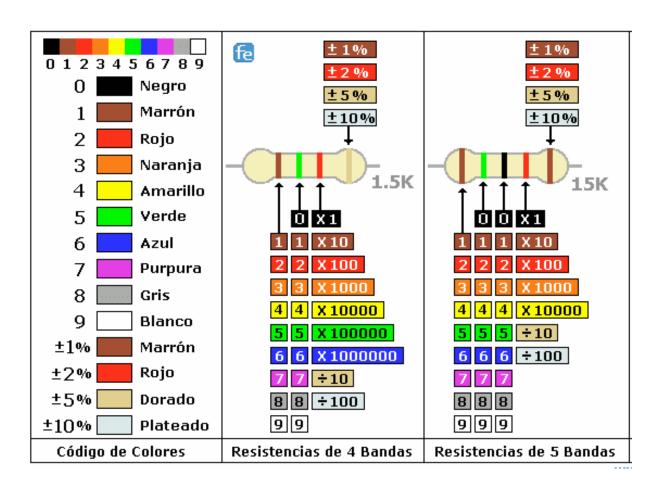
PELÍCULA METÁLICA

PELÍCULA ÓXIDO METÁLICO

METAL VIDRIADO

TIPOS DE RESISTENCIAS VARIABLES


POTENCIÓMETROS


TRIMMERS

REÓSTATOS

ESPECIFICACIONES DE LAS RESISTENCIAS VALOR NOMINAL Y TOLERANCIA POR CÓDIGO DE COLORES

VALORES PREFERIDOS PARA LAS RESISTENCIAS CON CÓDIGO DE COLORES

* Al distribuir los valores nominales que van a tener las resistencias comerciales tomando como base el rango del 1 al 10, hay que considerar las tolerancias de las resistencias. No tiene sentido fabricar resistencias de 100Ω y de 102Ω si la tolerancia de la estas resistencias es $\pm 10\%$, y por lo tanto el valor real de la primera puede variar entre 90Ω y 110Ω .

*Los valores nominales se asignan siguiendo una progresión geométrica basada en las siguientes relaciones:

$$^6\sqrt{10} = 1,46$$
 para $\pm 20\%$ de tolerancia
 $^{12}\sqrt{10} = 1,21$ para $\pm 10\%$ de tolerancia
 $^{24}\sqrt{10} = 1,10$ para $\pm 5\%$ de tolerancia

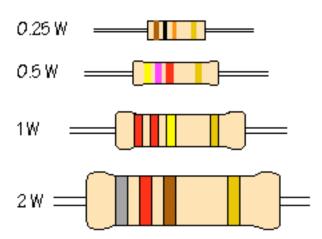

* La **Asociación de Industrias Electrónicas** (Electronic Industries Associaton, EIA) especifica los valores estándar de resistencias dependiendo de la tolerancia de las mismas, de acuerdo a lo indicado.

Tabla de valores preferidos

Tolerancia	±20%	±10%	±5%
Porcentaje total de error	40%	20%	10%
Multiplicador	$^{6}\sqrt{10} = 1,46$	$1^{12}\sqrt{10} = 1,21$	$ ^{24}\sqrt{10} = 1,10$
Valores	10	10	10
			11
		12	12
			13
	15	15	15
			16
		18	18
			20
	22	22	22
			24
		27	27
			30
	33	33	33
			36
		39	39
			43
	47	47	47
			51
		56	56
			60
	68	68	68
			75
		82	82
			91
	100	100	100

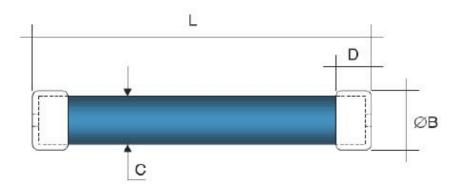
POTENCIA

Por tamaño

Indicada sobre el componente

Alta potencia

RESISTENCIAS DE MUY ALTA POTENCIA


SPECIFICATIONS

	Wattage	Resistance R	ange [ohms]
Model	Rating in Free Air	Inductive	Non- Inductive
IRP1000	400	0.1-140	0.1-36
IRP2000	800	0.1-280	0.1-72
IRP3000	1100	0.1-420	0.1-108
IRP4000	1400	0.1-560	0.1-144
IRP5000	1600	0.1-700	0.1-180
IRP6000	1800	0.1-840	0.1-216
IRP7000	2100	0.1-980	0.1-252
IRP8000	2400	0.1-1120	0.1-288
IRP9000	2700	0.1-1260	0.1-324
IRP10000	3000	0.1-1400	0.1-360

Ultra High Voltage Resistors - Non Inductive

Serie 1000 Cylindrical

Туре	P 40 °C (watt)	U (kV)	L	В	С	D
1000.150	150	200	470	46	38	25
1000.200	200	250	600	46	38	25
1000.250	250	300	800	54	48	25
1000.300	300	400	1000	54	48	30

Dimensions in mm

Design / Technology	Exclusive Non-Inductive	Design with Uniform Voltage Distribution / Thick Film		
Resistance Values	from 1M Ω to as high as 100G Ω			
Tolerances	±10%, ±5%, ±2%, ±1%,	±0.5%, ±0.25%, ±0.1% or ±0.05%		
Temperature Coefficients	100 ppm/° C, 50 ppm/° C	100 ppm/° C, 50 ppm/° C, 25 ppm/° C or 15 ppm/° C, (10 ppm/° C and 5 ppm/° C on request)		
Voltage Coefficient	< 0.003 ppm/V			
Operating Temperature	-55 + 225° C	(extended temperature range available)		

RESISTENCIAS PARA MONTAJE SUPERFICIAL

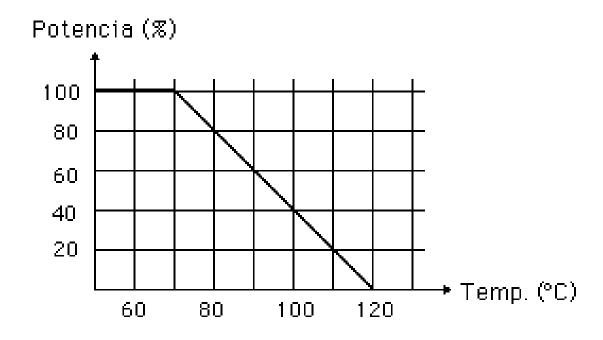
Power Metal Strip[®] Resistors, Very High Power (to 1 W), Low Value (down to 0.001 Ω), Surface Mount

FEATURES

- Very high power to foot print size ratio (1 W in 1206, 0.5 W in 0805 and 0.4 W in 0603 package)
- Ideal for all types of current sensing and pulse applications including switching and linear power supplies, instruments, power amplifiers and shunts
- Proprietary processing technique produces extremely low resistance values (down to $0.001~\Omega$)
- · All welded construction
- Solid metal nickel-chrome or manganese-copper alloy resistive element with low TCR (< 20 ppm/°C)
- Very low inductance 0.5 nH to 5 nH
- Excellent frequency response to 50 MHz
- Low thermal EMF (< 3 μV/°C)
- AEC-Q200 qualified available (1)
- Compliant to RoHS Directive 2002/95/EC

Note

(1) Flame retardance test may not be applicable to some resistor technologies



CAPACIDAD DE DISIPACIÓN VS. TEMPERATURA

A partir de una cierta temperatura, la capacidad de disipación comienza a disminuir proporcionalmente con el aumento de temperatura. (Curva de "derating").

COEFICIENTE DE TEMPERATURA

*Las variaciones de la temperatura ambiente pueden afectar el valor real de la resistencia, Ro.

* Dado el valor real de una resistencia, R_0 , a una temperatura dada, t_0 , el valor real, R_1 , a una temperatura t_1 , está dado por la siguiente relación:

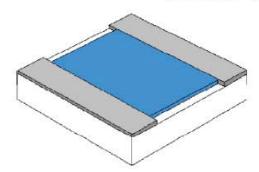
$$R_1 = R_0 [1+a(t_1-t_0)]$$

* Parámetro "a": coeficiente de temperatura especificado por el fabricante, expresado en unidades de 1/°C, 1/°K ó 1/°F.

* Por lo general, este factor es lo suficientemente pequeño para que no sea necesario tomarlo en cuenta en circuitos que no requieran mucha exactitud.

FRECUENCIA DE OPERACIÓN

Las resistencias presentan capacitancias e inductancias parásitas, cuyo efecto es más relevante a altas frecuencias. Para trabajar en la parte más alta del espectro de frecuencias es necesario fabricar resistencias especialmente diseñadas para ello.


State of the Art, Inc.

www.resistor.com

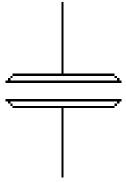
02/03/05

S0202AF High Frequency Thin Film Chip Resistor

Standard Grade, Surface Mount, Top Surface Terminations

PRODUCT FEATURES

- Frequency Range to 20GHz with excellent VSWR characteristics
- Produced with the same stringent quality and reliability standards as our QPL S level Mil-PRF-55342 and space level products
- High stability thin film resistor element, 99.5% alumina substrate
- Tight tolerance and low TCR availability


CONDENSADORES O CAPACITORES

DEFINICIÓN

* Un condensador es un componente circuital cuya principal característica es la de almacenar la energía que recibe del circuito donde está conectado en el **campo eléctrico** existente en él.

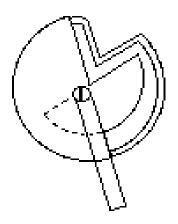
*Su parámetro característico es la "Capacitancia", representada con la letra C.

- * En este elemento puede considerarse despreciable la energía almacenada en el campo magnético (inductancia parásita), pero en muchos casos hay que tomar en cuenta la energía disipada en forma de calor (resistencia parásita).
- * Consta de dos placas conductoras extensas (electrodos) entre las cuales se encuentra un material dieléctrico. Al aplicar una diferencia de potencial entre las dos placas, se crea un campo eléctrico entre ellas.

TIPOS DE CONDENSADORES

* NO ELECTROLÍTICOS

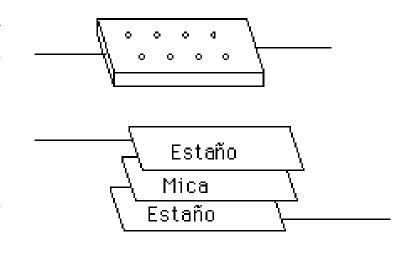
Dieléctrico de aire Mica Papel Plástico Cerámica


* ELECTROLÍTICOS


Aluminio Tantalio

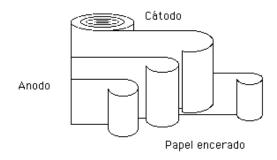
CONDENSADORES CON DIELÉCTRICO DE AIRE

* Se utilizan cuando se necesitan condensadores variables, como por ejemplo en el circuito de sintonización de una radio AM.

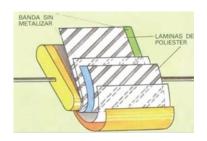

* Los valores de capacitancia que se pueden conseguir con este dieléctrico son pequeños (del orden de las decenas o centenas de pF).

CONDENSADORES DE MICA

- * La mica es un material que presenta bajas pérdidas, gran estabilidad y una rigidez eléctrica elevada: Buen dieléctrico para condensadores.
- * Desventaja: Es mas costosa que otros materiales.
- * Estos condensadores se utilizan en equipos de radiofrecuencia (RF) de baja y media potencia.


* La constante dieléctrica de este material es 7,5.

CONDENSADORES DE PAPEL


- * El dieléctrico utilizado es papel encerado.
- * La constante dieléctrica es igual a 4.
- * Los electrodos pueden ser de papel de aluminio o estar constituidos por aluminio depositado directamente sobre el papel.
- * El conjunto se enrolla para formar un paquete que es tratado al vacío, impregnando con aceite o cera y sellado, para que no lo afecte la humedad.

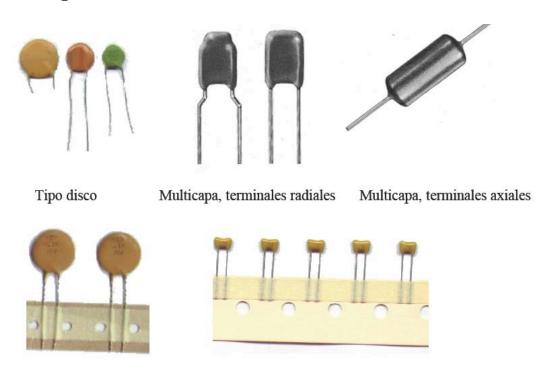
CONDENSADORES DE PLÁSTICO

- * Las características constructivas de estos condensadores son similares a las de los de papel.
- * Estos materiales presentan pocas pérdidas eléctricas y su costo es bajo.

Estructura de un cond. de plástico

Cond. de poliéster

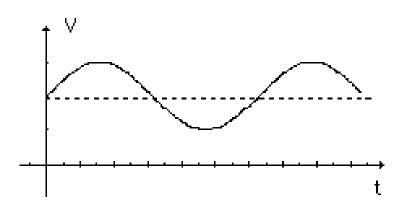
Cond. de policarbonato



Cond. de polipropileno

CONDENSADORES DE CERÁMICA

*Este material presenta una constante dieléctrica que puede estar comprendida entre 2 y 10.000, por lo tanto pueden fabricarse con él condensadores de valores muy variados, de 0,5 pF a 22 µF.

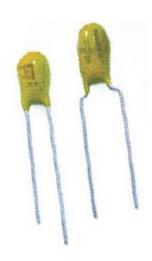

*Tienen la desventaja de presentar varias restricciones en cuanto a voltaje máximo que puede soportar, temperatura máxima, frecuencia máxima, etc., que el fabricante debe especificar.

Empacados para auto-inserción

CONDENSADORES ELECTROLÍTICOS

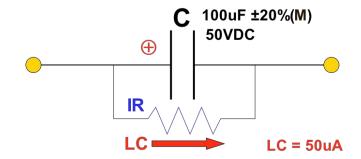
- *Algunos metales, cuando se sumergen en una solución adecuada y se hace circular corriente continua entre ellos a través de la solución, forman una capa aislante delgada a su alrededor (anodización).
- *Hay condensadores electrolíticos de aluminio y de tantalio.
- *Esta capa presenta una capacidad muy grande por unidad de superficie y es capaz de soportar un voltaje considerable, con tal de que la polaridad aplicada sea igual a la utilizada en su proceso de fabricación.
- *Estos condensadores tienen indicada en sus terminales la polaridad a la que deben conectarse circuitalmente.
- *Si estos condensadores tienen que conectarse entre dos puntas donde el voltaje conste de una componente continua y una alterna, el valor de ambas debe ser tal que nunca varíe la polaridad del voltaje total.

DIFERENTES MODELOS DE CONDENSADORES ELECTROLÍTICOS

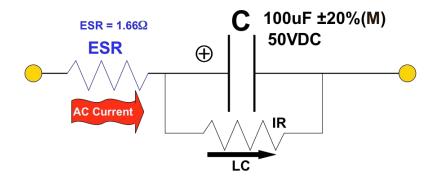


Electrolítico de aluminio, terminales axiales radiales

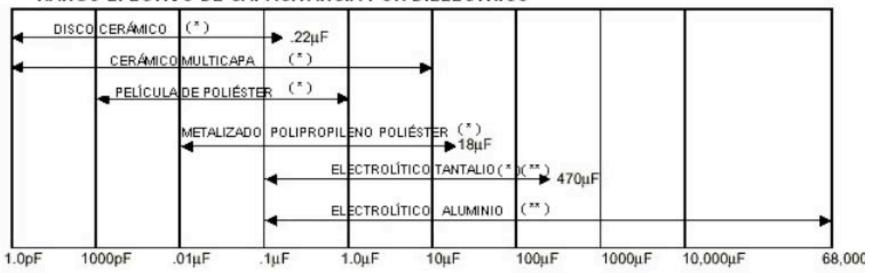
Electrolítico de aluminio, terminales


Electrolítico de aluminio, terminales "snap-in"

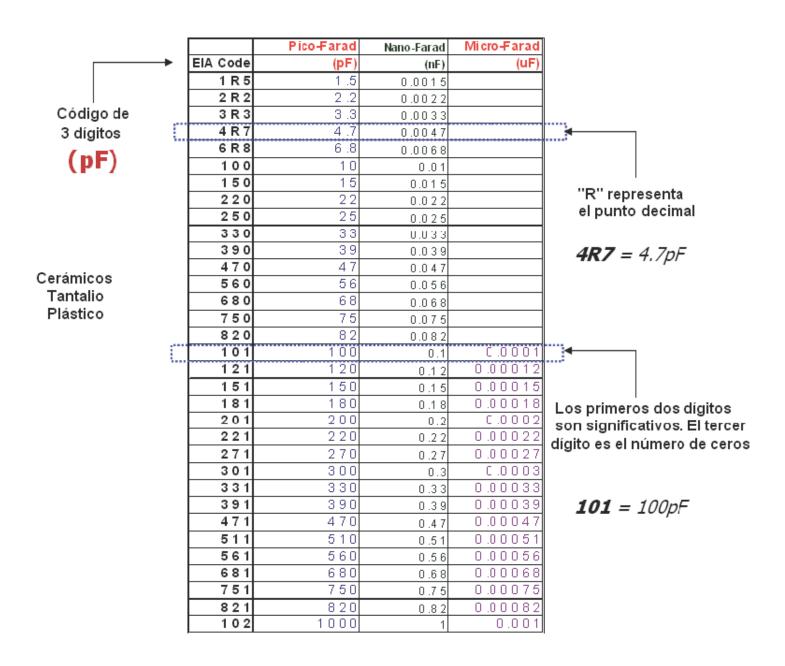
Electrolítico de tantalio


MODELO CIRCUITAL DE UN CONDENSADOR REAL

Resistencia en paralelo: Corriente de fuga (descarga) (leakage current LC)


Resistencia en serie: (Equivalent Series Resistance ESR).

Elemento que determina las pérdidas en función de la corriente AC

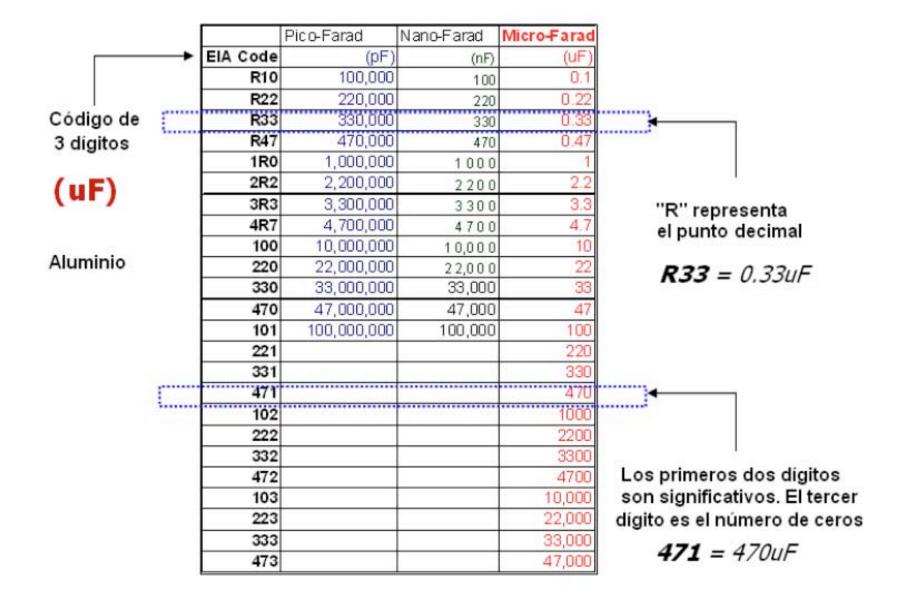

RANGO DE VALORES NOMINALES POR DIELÉCTRICO

RANGO EFECTIVO DE CAPACITANCIA POR DIELÉCTRICO

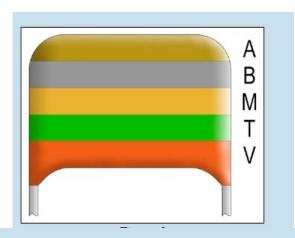
- (*) CÓDIGO EN pF
- (**) CÓDIGO EN µF

VALOR NOMINAL: POR CÓDIGO NUMÉRICO

			Pico-Farad	Nano-Farad	Micro-Farad	
	•	EIA Code	(pF)	(nF)	(uF)	
		122	1200	1.2	0.0012	
		152	1500	1.5	0.0015	
Código de		202	2000	2	0.002	
3 dígitos		222	2200	2.2	0.0022	
		272	2700	2.7	0.0027	
(pF)		302	3000	3	0.003	103 = 10,000pF
		332	3300	3.3	0.0033	
		392	3900	3.9	0.0039	103 = 10nF
		472	4700	4.7	0.0047	
		562	5600	5.6	0.0056	103 = 0.01uF
		682	6800	6.8	0.0068	
C		822	8200	8.2	0.0082	
Cerámicos		103	10,000	10	0.01	
Tantalio		123	1 2,0 0 0	1 2	0.012	
Plástico		153	15,000	15	0.015	
		183	18,000	18	0.018	104 = 100,000pF
		223	22,000	2.2	0.022	
		333	33,000	33	0.033	104 = 100nF
		473	47,000	4.7	0.047	444 045
		563	56,000	56	0.056	104 = 0.1uF
		683	68,000	68	0.068	
		823	82,000	8.2	0.082	
	١	104	100,000	100	0.10	
		124	120,000	120	0.12	
		154	150,000	150	0.15	
		224	220,000	220	0.22	
		334	330,000	330	0.33	10.000.000
		474 564	470,000	470	0.47 0.56	106 = 10,000,000pF
			560,000	560		104 - 10 000nE
		105	1,000,000	1000	1.0	104 = 10,000nF
		225 335	2,200,000	2200	2.2 3.3	104 = 10uF
			3,300,000	3300		107 - 10ur
		475	4,700,000	4700	4.7	


685

106 226 6,800,000


10,000,000 22,000,000 6.8

6800

10000 10 22,000 22

VALOR NOMINAL: POR CÓDIGO DE COLORES (INCLUYE TOLERANCIA Y VOLTAJE MÁXIMO)

	1ª cifra A	2ª cifra B	Multiplicador M	Tolerancia T	Tensión máxima V
NEGRO	0	0	x 1pF	20%	
MARRON	1	1	x 10pF		100V
ROJO	2	2	x 100pF		250V
NARANJA	3	3	x 1nF		
AMARILLO	4	4	x 10nF		400V
VERDE	5	5	x 100nF	5%	
AZUL	6	6			
VIOLETA	7	7			
GRIS	8	8	x 0.1pF		
BLANCO	9	9	x 0.01pF	10%	

TOLERANCIA

Código	Tolerancia	Código	Tolerancia
A	± 0.05 pF	M	± 20 %
В	± 0.1 pF	N	± 30 %
C	± 0.25 pF	P	- 0 ~ + 100%
D	± 0.5 pF	Q	- 10 ~ + 30%
Е	± 0.5 %	S	± 22 %
F	± 1.0 %	T	- 10 ~ + 50%
G	± 2.0 %	U	- 10 ~ + 75%
Н	± 2.5 %	W	- 10 ~ + 100%
J	± 5.0 %	Y	- 20 ∼ + 5%
K	± 10 %	Z	- 20 ~ + 80%
L	± 15%		

COEFICIENTE DE TEMPERATURA

Es el máximo rango de tolerancia permisible sobre un rango especificado de temperatura.

Low Temperature Limit	High Temperature Limit	Maximum Allowable Capacitance Change From +25°C (0 VDC)
$X = -55^{\circ}C$	5 = +85°C	$F = \pm 7.5\%$
Y = -30°C	6 = +105°C	P = ±10%
Z = −10°C	7 = +125°C	R = ±15%
34000	8 = +150°C (SPECIAL)	S = ±22%
		T = +22% / -33%
		U = +22% / -56%
		V = +22% / -82%

 $X5R = \pm 15\% \Delta C$ en un rango de -55°C a +85°C

 $X7R = \pm 15\% \Delta C$ en un rango de -55°C a +125°C Tolerancia estandar: $K = \pm 10\%$

Y5F = $\pm 7.5\%$ Δ C en un rango de -30°C a +85°C

 $Y5P = \pm 10\% \Delta C$ en un rango de -30°C a +85°C

Y5R = $\pm 15\%$ Δ C en un rango de -30°C a +85°C

Y5S = $\pm 22\%$ Δ C en un rango de -30°C a +85°C

 $Y5T = +22\% / -33\% \Delta C$ en un rango de -30°C a +85°C

 $Y5U = +22\% / -56\% \Delta C$ en un rango de -30°C a +85°C

VOLTAJE MÁXIMO ENTRE LOS TERMINALES

CODE	VDC
0G	4.0
OJ	6.3
1A	10
1C	16
1E	25
10	35
1H	50
1J	63
2A	100
2D	200
2E	250
2V	350
2G	400
2W	450
2W	450

EJEMPLO DE LOS CÓDIGOS DE IDENTIFICACIÓN CONDENSADOR CERÁMICO TIPO DISCO

NCD 102 M 1KV Z5U D TR

NCD: Identificación del tipo de condensador: Nippon Ceramic Disk

102 : Valor nominal de la capacitancia. Los dos primeros dígitos constituyen el valor de dos cifras en picofaradios (10 pF) y el tercero es el exponente de la potencia de 10 (2), por lo que el condensador tiene un valor nominal de 10 x 100 pF = 1000 pF = 1 nF.

M: Letra correspondiente a la Tolerancia a 25 °C, En este caso es \pm 20%.

1KV: Voltaje máximo.

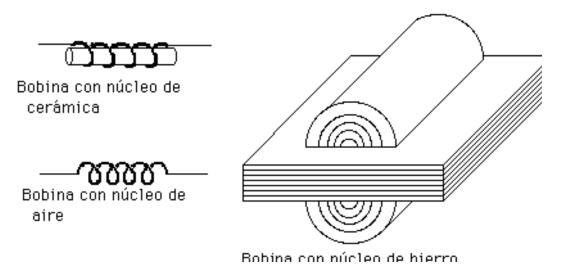
Z5U: Código del coeficiente de temperatura. En este caso corresponde a +22% / -56% ΔC en un rango de $-10^{\circ}C$ a $+85^{\circ}C$, con una tolerancia estandar M, correspondiente a $\pm 20\%$.

D: Código opcional para los terminales

TR: "Tape and Reel", para auto-inserción

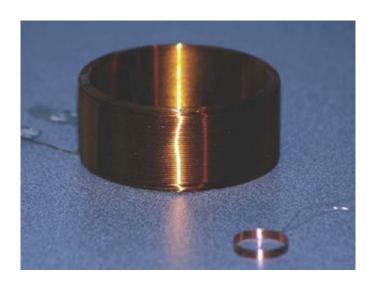
OTRO EJEMPLO

$$1A = 10V$$


$$104 = 10 \text{ x } 10^4 \text{ pF} = 10^5 \text{ pF} = 100 \text{ nF}$$

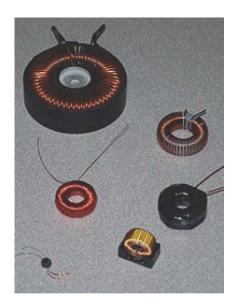
$$J = 5\%$$

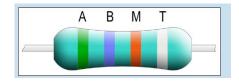
INDUCTORES O BOBINAS


DEFINICIÓN

- * Una bobina es un componente circuital cuya principal característica es almacenar la energía que recibe del circuito donde está conectado en el **campo magnético** existente en él.
- * Su parámetro característico es la "Inductancia", representada con la letra L.
- * En este elemento hay que tomar en cuenta la energía disipada en forma de calor (resistencia parásita), pero por lo general la energía almacenada en el campo eléctrico puede considerarse despreciable (capacitancia parásita), a menos que se trabaje a altas frecuencias.
- * Las bobinas están constituidas por un alambre enrollado alrededor de un núcleo, que puede ser o no un material ferromagnético.

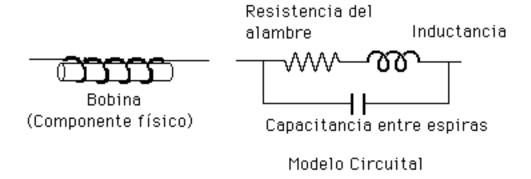
DIFERENTES MODELOS DE INDUCTORES O BOBINAS


Bobinas con núcleo de aire

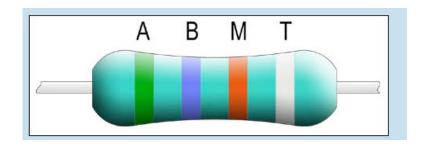

Bobinas con núcleo sólido

Toroides

Bobinas encapsuladas con código de colores


CARACTERÍSTICAS DE LOS INDUCTORES O BOBINAS

Valor nominal y tolerancia: Normalmente escritos sobre la bobina o se incluye en un manual. Algunas bobinas presentan un código de colores.


Resistencia interna

Corriente máxima (para las bobinas de núcleo ferromagnético se especifica la corriente de saturación)

Frecuencia de operación

CÓDIGO DE COLORES DE LOS INDUCTORES O BOBINAS

	1ª cifra A	2ª cifra B	Multiplicador M	Tolerancia T
PLATA			x 0.01µH	10%
ORO			x 0.1µH	5%
NEGRO	0	0	x 1µH	20%
MARRON	1	1	x 10µH	1%
ROJO	2	2	x 100µH	2%
NARANJA	3	3	x 1mH	3%
AMARILLO	4	4	x 10mH	4%
VERDE	5	5		
AZUL	6	6		
VIOLETA	7	7		
GRIS	8	8		
BLANCO	9	9		